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We present a new benchmarking procedure that is unambiguous and specific to local community-
finding methods, allowing one to compare the accuracy of various methods. We apply this to new
and existing algorithms. A simple class of synthetic benchmark networks is also developed, capable
of testing properties specific to these local methods.
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I. INTRODUCTION

The study of complex networks [1–3] has recently
arisen as a powerful tool for understanding a variety of
systems, such as biological and social interactions [4, 5],
technology communications and interdependencies [1, 6],
and many others. The problem of detecting communi-

ties, subsets of network nodes that are densely connected
amongst themselves while being sparsely connected to
other nodes, has attracted a great deal of interest due to
a variety of applications [7–12]. Many techniques have
been developed to find these subsets, with a broad array
of costs and associated accuracies [13].
Many community-finding algorithms hinge upon max-

imizing a quantity known as Modularity [14, 15], often
defined as:

Q =
1

2M

∑

v,w

(

Avw −
kvkw
2M

)

δ(cv, cw), (1)

where A is the adjacency matrix, M is the total number
of edges, ki is the degree of vertex i, and δ(cv, cw) = 1
if nodes v and w are in the same community and zero
otherwise. Thus Q is the fraction of edges found to be
within communities, minus the expected fraction if edges
were randomly placed, irrespective of an underlying com-
munity structure but respecting degree. The second term
then acts as a null model, and large values of Q indicate
deviations away from a random network structure.
Very efficient algorithms have been created utilizing

greedy optimization of Q [15–17], but any algorithm us-
ing Q must necessarily be a global method, requiring
complete knowledge of the entire network. Meanwhile,
it has been shown [18] that Q is not ideal, and a vari-
ety of other techniques exist [13], but these too generally
require global knowledge. This knowledge isn’t available
for certain types of networks, such as the WWW, which
is simply too large and evolves too quickly to have a
fully known structure. In these circumstances, one must
rely on a local method capable of finding a particular
community within a network, without knowledge of the
structure outside of the discovered community. Several
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local methods exist, all of which attempt to find the com-
munity containing a particular starting node [19–22].

In this work we present a new technique for quantify-
ing the accuracy of a local method, so that one can de-
termine how various algorithms perform relative to each
other. Due to the unique dependence a local method has
upon its starting node, we also develop a simple set of ad
hoc benchmark networks, with a generalized degree dis-
tribution, allowing one to test accuracy when the starting
node is a hub, for example. We also present a new local
method, as well as several types of stopping criteria in-
dicating when an algorithm has best found the enclosing
community.

II. LOCAL COMMUNITY DETECTION

METHODS

We focus our efforts on two existing algorithms, due to
Clauset [21] and Luo, Wang, and Promislow (LWP) [22],
as well as a new method. Several other local methods ex-
ist, including those due to Flake, Lawrence, and Giles [19]
and Bagrow and Bollt [20], but these are either reliant
on a priori assumptions of network properties (limiting
applicability to specific types of networks, such as the
WWW), or tend to be accurate only when used as part
of a more global method. Other methods (for example,
[23, 25, 32]) concern themselves with local community
structure, but either require global knowledge to first
determine this structure, or are defined locally but do
not provide a definitive partition necessary for evalua-
tion [24–31].

All three algorithms begin with a starting node s and
divide the explored network into two regions: the commu-
nity C, and the set of nodes adjacent to the community,
B (each has at least one neighbor in C). At each step,
one or more nodes from B are chosen and agglomerated
into C, then B is updated to include any newly discov-
ered nodes. This continues until an appropriate stopping
criteria has been satisfied. When the algorithms begin,
C = {s} and B contains the neighbors of s: B = {n(s)}.
See Fig. 1(a).

The Clauset algorithm focuses on nodes inside C that
form a “border” with B: each has at least one neighbor
in B. Denoting this set Cborder, and focusing on incident
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edges, Clauset defines the following local modularity:

R =

∑

i,j βij [i /∈ B][j /∈ B]
∑

i,j βij

, (2)

where βij is the adjacency matrix comprising only those
edges with one or more endpoints in Cborder and [P ] = 1
if proposition P is true, and zero otherwise. Each node
in B that can be agglomerated into C will cause a change
in R, ∆R, which may be computed efficiently. At each
step, the node with the largest ∆R is agglomerated. This
modularity R lies on the interval 0 ≤ R ≤ 1 (defining
R = 1 when |Cborder| = 0) and local maxima indicate
good community separation, as shown in Fig. 2. For a
network of average degree d, the cost to agglomerate |C|
nodes is O(|C|2d).
The LWP algorithm defines a different local modular-

ity, which is closely related to the idea of a weak com-
munity [10]. Define the number of edges internal and
external to C as Min and Mout, respectively:

Min =
1

2

∑

i,j

Aij [i ∈ C][j ∈ C], (3)

Mout =
∑

i,j

Aij [i ∈ C][j ∈ B]. (4)

The LWP local modularity Mf is then:

Mf (C) =
Min

Mout
. (5)

When Mf > 1/2, C is a weak community, according
to [10]. The algorithm consists of agglomerating every

node in B that would cause an increase in Mf , ∆Mf > 0,
then removing every node from C that would also lead
to ∆Mf > 0 so long as the node’s removal does not
disconnect the subgraph induced by C. (Removed nodes
are not returned to B, they are never re-agglomerated.)
Finally B is updated and the process repeats until a step
where the net number of agglomerations is zero. The
algorithm returns a community if Mf > 1 and s ∈ C.
Similar to the Clauset method, the cost of agglomerating
|C| nodes is O(|C|2d).
Finally, we present a new algorithm, as an illustra-

tion of how simple an effective local method can be. Let
us define the “outwardness” Ωv(C) of node v ∈ B from
community C:

Ωv(C) =
1

kv

∑

i∈n(v)

(

[

i /∈ C
]

−
[

i ∈ C
]

)

(6)

=
1

kv

(

koutv − kinv
)

(7)

where n(v) are the neighbors of v. In other words, the
outwardness of a node is the number of neighbors outside
the community minus the number inside, normalized by
the degree. Thus, Ωv has a minimum value of −1 if
all neighbors of v are inside C, and a maximum value

(a) (b)

FIG. 1: (color online) (a) The community C is surrounded
by a boundary of explored nodes B. This exploration implies
an additional layer of nodes that are known only due to their
adjacencies with B. (b) Two nodes i and j in B, with Ωi =
2/3 and Ωj = −1. Moving node j into C will give improved
community structure, compared to moving i.

of 1 − 2/kv, since any v ∈ B must have at least one
neighbor in C. Since finding a community corresponds to
maximizing its internal edges while minimizing external
ones, we agglomerate the node with the smallest Ω at
each step, breaking ties at random. See Fig. 1(b).
This method is efficient for the following reasons.

When a node v ∈ B is moved into C, only the neigh-
bors of v will have their outwardness’ altered. For a node
i ∈ n(v), the change in Ωi is just ∆Ωi = −2/ki since only
a single link can exist between v and i. If node i was not
previously in B, it will now have a single edge to C and
Ωi = 1− 2/ki. Calculating Ωi at each step thus requires
knowing only ki, which may be expensive (for example,
on the WWW), but needs only be calculated upon the
initial discovery of i.
For efficiency, one can maintain a min-heap of the out-

wardness’ of all nodes in B then, at each step, extract
the minimum with cost O(log |B|), and update or insert
the neighboring Ω’s. For a network with average degree
d, the cost of this updating is O(d2 log |B|). This is often
an overestimate, depending on the community structure,
since a node’s degree need only be calculated once. Then,
the cost of agglomerating |C| nodes is O(|C|d2 log |B|).
The relative sizes of C and B are highly dependent on
the particular network and the current state of the al-
gorithm, but |B| ∼ |C| seems reasonable. A sparse net-
work with rich community structure would give a cost of
O(|C| log |C|).
While seeking to agglomerate the least outward nodes

at each step seems natural, it lacks a nicely defined mea-
sure of the quality of the community, analogous to R in
the Clauset agglomeration. To overcome this we simply
track Mout during agglomeration. The smaller this is the
better the community separation, so we expect local min-
ima in Mout when a community has been fully agglomer-
ated. In addition, Mout can be easily computed alongside
agglomeration. After agglomerating node v, the change
in Mout is just ∆Mout = 2koutv − kv. As shown in Fig. 3,
Mout provides useful information about a real-world net-
works’ community structure, in this case the amazon.com
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FIG. 2: (color online) Comparison between quality measures
for the Clauset algorithm, R, and the method presented here,
Mout. Shown are the average of 500 realizations of the 128
node ad hoc networks, for zout = 1, 2, . . . , 6.

co-purchasing network [41].
Using Mout as a measure of quality is not ideal, how-

ever: it’s not normalized, and (like the Clauset modular-
ity) obtains a trivial value when the entire network has
been agglomerated. The latter is less of an issue for lo-
cal methods. More worrisome is the fact that Mout may
also be trivially small when C is small. See Fig. 2 for a
comparison of R and Mout. We continue to use Mout for
the sake of simplicity, but more involved measures may
certainly lead to improved results.

III. STOPPING CRITERIA

After identifying an appropriate agglomeration
scheme, a local method must also be able to appropri-
ately stop adding nodes. Here we suggest two possible
schemes and will use the techniques and benchmarks
of Sec. IV to compare them. It is important that the
stopping criteria is also local; a criteria that spreads to
the entire network then finds, e.g., the largest values of
∆Mout is no longer a local algorithm.
These stopping criteria are essentially divorced from

the agglomeration schemes of most local algorithms, al-
lowing one to mix and match to find more accurate meth-
ods. We show this with the Clauset and new method from
Sec. II. The LWP algorithm already contains a stopping
criteria and we use it unaltered.
A subgraph C ⊂ G is a strong community when every

node in C has more neighbors inside C than outside [10,
19]. This may be used as a local stopping criterion in the
following way: agglomerate nodes until C becomes, and
then ceases to be, strong. Unfortunately, this can be too
strict, since a single node can terminate the algorithm.
Define a p-strong community as one where this is true

Planet Earth: BBC Series, DVD
Gravitation: Thorne, Wheeler, Misner
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FIG. 3: (color online) Comparison of a seminal physics text
and a popular DVD (#1 seller at the time of calculation) on
the amazon.com co-purchasing network. Fluctuations inMout

in both items indicate the presence of non-trivial community
structure. The smooth curve is for a 2D periodic lattice of
500× 500 nodes.

for only a fraction p of nodes in C. Then, one can relax
the condition by lowering p. Multiple values of p can be
used simultaneously, at little cost, and the ”best” result
(smallest Mout > 0, largest R < 1) can be retained as
C. We do this for {p} = {0.75, 0.76, . . . , 1}. For specific
details, see Appendix A.
Another stopping criterion is what we refer to as Trail-

ing Least-Squares. Fitting a polynomial to the plot of
Mout during agglomeration, one can identify the cusp or
inflection point that indicates a community border. This
method is somewhat involved but our benchmarking pro-
cedure shows that it works quite well. See Appendix B.

IV. BENCHMARKING

A. Test graphs

It has become standard practice to test community al-
gorithms with synthetic networks that possess a given
community structure and a parameter to control how
well separated the communities are. The traditional ex-
ample is the so-called “ad hoc” networks [14, 33], which
typically possesses 128 nodes divided into four equally
sized communities. Each node has (on average) degree
z = zin + zout = 16, where zout is the number of links
a node has to nodes outside its community. A smaller
zout (and correspondingly larger zin) leads to communi-
ties that are easier to detect.
These ad hoc networks have a sharply peaked degree

distribution. Since local algorithms are dependent on a
particular starting node, their accuracy might be affected
if the starting node is a hub or a leaf [42]. So one would
also like more realistic synthetic networks which possess
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a wider degree distribution, such as a power law. To do
this, we propose the following:

1. Build a graph G of N nodes and M edges, per-
haps using the configuration model and a given de-
gree distribution. Throughout this work, we use
Barabási-Albert graphs of N = 512, and m0 =
8 [43].

2. Randomly partition the nodes ofG into two or more
groups. These will serve as the “actual” communi-
ties. We limit ourselves to four equally sized parti-
tions.

3. Choose random pairs of edges that are between the
same two groups and rewire them to be within the
groups, in such a way that the degree distribution
is unaltered.

This rewiring (or switching) technique, replacing edges
(i, j) and (k, l) with edges (i, k) and (j, l) [34, 35], has
been used in the past to destroy the presence of com-
munity structure, allowing for a null model to test for
false positives [36]. Here we do the opposite, and com-
munities become more sharply separated as the number
of rewirings increases.
Since the partition is random, the initial modularity

Q0 will be very small. As edges are moved within com-
munities, the first sum in Eq. (1) will grow but the second
term will remain unchanged, since the degree distribution
is unaffected. Therefore, the modularity of the actual
partition Q(t) after t pairs of edges have been moved is

Q(t) = Q0 +
2

M
t. (8)

Rewiring M/4 pairs of edges will give Q ≈ 1/2, creating
an appreciable amount of community structure in the
previously randomized graph.

B. Evaluation

Any local method creates a binary partition of the net-
work into the community itself, C, and the remaining
non-communnity nodes, C̃ = V − C. In a realistic set-
ting V is unknown, but synthetic benchmarks allow one
to know the full division. In addition, for a synthetic
benchmark, the true partition PR = {CR, C̃R} is already

known, while the found partition PF = {CF , C̃F } may
differ.
Traditionally, the accuracy of the found communities

is quantified by the fraction of correctly identified nodes.
This has been shown to have drawbacks [33] and the
binary partitioning of a local algorithm poses further
problems. For example, if the algorithm fails to stop
in time, it has still identified every node in the commu-
nity correctly, there are just additional nodes incorrectly
attributed to that community. Should each incorrect
node give a penalty? If the algorithm incorrectly finds

one community of N nodes, when there were actually
K communities of N/K nodes each, one could assign a
+1/N for each correct node and −1/N for each incor-
rect node, giving a composite score of 2/K − 1. This
means that synthetic networks with different K’s can-
not be directly compared. While scores could be subse-
quently re-normalized to lie between 0 and 1, we propose
an alternative that avoids these problems and is unam-
biguous.
Following the application introduced in [13], we use

Normalized Mutual Information [37, 38] to measure how
well PR and PF correspond to each other:

I(PR, PF ) =
−2

∑

i

∑

j Xij log
(

XijN

Xi.X.j

)

∑

iXi. log
(

Xi.

N

)

+
∑

j X.j log
(

X.j

N

) , (9)

where X is a 2 × 2 matrix with Xij being the number
of nodes from real group i that were placed in found
group j, X.j = X1j + X2j , and Xi. = Xi1 + Xi2. In
a sense, I(PR, PF ) is a measure of how much is known
about partition PR by knowing partition PF , with I = 1
corresponding to perfect knowledge, and I = 0 to no
knowledge at all.
In general, the confusion matrix X is NR ×NF where

NR and NF are the number of real and found communi-
ties, respectively. The application of Eq. (9) is a limiting
case corresponding to the binary partitioning inherent to
local algorithms.
In most figures, we have included a “faked” global

method, the Clauset-Newman-Moore (CNM) algo-
rithm [15, 16], for comparison. This was done by running
CNM to find the partitioning with the highest modular-
ity, one random community was designated C, and the
other communities were grouped together in C̃. A local
algorithm is unlikely to match the accuracy of a global
method, as shown.

V. RESULTS AND DISCUSSION

The results of simulations, shown in Figs. 4–7, indi-
cate the relative accuracies of the various algorithms and
stopping criteria. As shown in Figs. 4 and 7, the LWP
method performs extremely well for clearly separated
communities, with a rapid decrease in accuracy as the
separation blurs.
The “best of {p}-strong” (Figs. 6 and 7) and trailing

least-squares (Figs. 6 and 8) stopping criteria first per-
form at comparable accuracy for both algorithms for the
128-node ad hoc networks, but the trailing least-squares
tends to perform better as community distinction blurs.
Trailing least-squares outperforms {p}-strong in the 512-
node networks (Fig. 8 vs. Fig. 9), suggesting that the
size of the community impacts accuracy (which might be
expected when fitting data).
Overall, the best of {p}-strong has the least accuracy

but is also least affected by the degree of the starting
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FIG. 4: (color online) An overall comparison of the various
methods for the 128-node ad hoc networks, averaged over 1000
realizations. The LWP method is by far the most accurate
for low zout, while the trailing least-squares methods offer the
best performance at higher values.
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FIG. 5: (color online) Using the “best of {p}-strong” criteria
on the 512-node rewired networks, for {p} = 0.75, 0.76, . . . , 1.
Each point averaged over 500 realizations. The effect of reject-
ing any individual p-strong results where Mout = 0 (R = 1) is
more apparent for these networks, especially for hub nodes.

node. Meanwhile, trailing least-squares performs bet-
ter overall but is more dependent on the starting node.
The LWP algorithm is also quite accurate overall, though
trailing least-squares can outperform it when the commu-
nity separation is less clear.
The agglomeration schemes presented share many sim-

ilarities, and a certain amount of “cross-pollination” is
possible. For example, accuracy may improve if one
maintains the outwardness of nodes after agglomeration
and, as per LWP, remove every node from C with posi-
tive outwardness. Another possibility is simply agglom-
erating all nodes with the minimum Ω together, instead
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FIG. 6: (color online) A comparison of the trailing least-
squares criteria for both the new algorithm and the Clauset
method. Starting from a hub tends to be the most accurate,
except when the communities are very well separated.
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FIG. 7: (color online) The LWP algorithm used on the rewired
benchmark networks. LWP performs very well for large num-
bers of rewirings, but becomes progressively worse as less
edges are moved. Both extremes, hubs and leaves, decrease
overall accuracy.

of breaking ties. This is not necessarily a trivial differ-
ence: the agglomeration histories may diverge since the
sequence of nodes exposed to B can differ.
There is much room open to develop accurate stopping

criteria. For example, the notion of a weak community
can also be generalized to provide a (perhaps improved)
stopping criteria. As defined, a community is weak when
Min > 1

2Mout. This can be generalized by introducing
a parameter to control how strict the constraint is: a
community is p-weak when Min > pMout. Thus, a weak
community corresponds to 1

2 -weak, and the LWP stop-
ping criteria is 1-weak. While the introduction of a fur-
ther parameter is not ideal, and the lack of performance
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of the p-strong criteria versus the trailing least-squares
is not promising, it may still be worth pursuing this and
other, similar stopping criteria. Furthermore, stopping
criteria using LS-sets and k-cores, as mentioned in [10],
may also be worth investigation.
In addition to finding a single community, any local

method could be easily adapted to find more community
structure, simply by running the local algorithm multiple
times (possibly without repeated agglomeration of nodes
or similar modifications). These quasi-local methods may
not have the same level of accuracy as a global method
— agglomerating communities sequentially may lead to
compounding errors — but it may still be worth pursu-
ing, even if only as an initialization step for a different
algorithm.
There is an implicit assumption, in all these meth-

ods, that the underlying network is truly undirected. Of
course, this is not generally true. In the WWW it is easy
to know what pages an explored web page links to, but
it is impossible to know how many other pages may link
to the explored page. These back links are simply dis-
regarded by the local methods, and it seems a difficult
problem to overcome, especially when applying a quasi-
local method and back links continue to be discovered as
more communities are found. One possible way to over-
come this is to maintain Ωv after agglomeration, then go
through all the found communities, remove nodes with,
say, Ω > 0, then re-agglomerate them into the community
with the smallest outwardness. Another idea, suggested
in [19] is to use a global index, such as a search engine,
to list all the back links. It seems that in a different con-
text, such as a partially explored social network, one has
no choice but to ignore these back links until they are
discovered, then adjust the results accordingly.

VI. CONCLUSIONS

Much recent work has been applied to the problem of
finding communities in complex networks. In this pa-
per, we have focused on the idea of finding a particular
community inside of a network without relying on global
knowledge of the entire network’s structure, knowledge
that is unavailable in a variety of areas. We have in-
troduced a new and very simple local method, with a
running time of O(|C| log |C|). Several types of stopping
criteria have been introduced, which can be used in con-
junction with different agglomeration schemes.
Using Normalized Mutual Information, we have in-

troduced a simple and unambiguous means of quanti-
fying the accuracy of a local algorithm when applied to a
synthetic network with pre-defined community structure.
Synthetic networks with generalized degree distributions
have been used to allow one to test the impact of the
starting node’s degree, something not possible with ex-
isting ad hoc networks.
These techniques have been applied to compare the

accuracy of a variety of agglomeration schemes and stop-

ping criteria and we feel they will be of great use when
testing newly designed local algorithms. The fact that
multiple stopping criteria and algorithms can perform
with comparable accuracy shows that the community
problem is ill-posed to the point of requiring heuristic
methods, and thus it is worth using an evaluation scheme
to compare and contrast alternative methods.

Appendix A: Strong Communities

As per [10, 19], a subgraph C ⊂ G is a strong com-
munity (denoted “ideal” in [19]) when every node in C
has more neighbors inside C than outside:

kini (C) > kouti (C), ∀i ∈ C. (A1)

This local quantity allows for a very simple, natural stop-
ping criteria: agglomerate nodes until the community be-
comes strong then, at each agglomeration step, check kin

and kout for the newly chosen node and stop agglom-
erating if the community would cease to be strong. If
C never becomes strong, the algorithm won’t terminate,
indicating a possible lack of community structure in the
explored region of the network.
As shown in Fig. 8, this “strong to not” criteria works

well for sharply separated communities, but tends to fail
as the contrast decreases. In a sense, a strong commu-
nity is too strong of a requirement: as the distinction be-
tween communities blurs, some nodes must fail Eq. (A1),
despite probable membership in C.
We generalize the notion of a strong community in the

following way. A community is p-strong if Eq. (A1)
holds, not for all, but only a fraction p (or more) of the
nodes:

∑

i∈C

[

kini (C) > kouti (C)
]

≥ p |C| . (A2)

Equations (A1) and (A2) are equivalent when p = 1,
while the requirement becomes increasingly lenient as p
decreases. This allows one to tune the sensitivity by vary-
ing p. See Fig. 9.
An additional benefit of Eq. (A2) is that multiple val-

ues of p can be used simultaneously [44], since a commu-
nity that is p1-strong is also p2-strong (p1 > p2). More
specifically, for the actual fraction peff ,

peff =
1

|C|

∑

i∈C

[

kini (C) > kouti (C)
]

, (A3)

C is p-strong for all p ≤ peff , and not p-strong for all
p > peff .
To use, simply choose a set of appropriate parameters,

{p1, p2, . . .}, perform the local algorithm, and maintain
the state of C as each pi stopping criteria is satisfied.
One can further use a quality value, such as Mout or R,
and choose the best corresponding Ci (in this case, that
with the smallest Mout or largest R [45]). This “best
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FIG. 8: (color online) The “strong to not” and trailing least-
squares stopping criteria for the 128-node ad hoc networks
using the Clauset method and the new algorithm presented
here. Each point is averaged over 1000 realizations.
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FIG. 9: (color online) Comparison of various p-strong stop-
ping criteria for the 128 node ad hoc networks using the new
algorithm shown in Sec. II.

of {p}” stopping criterion does not entirely negate the
introduction of a new parameter; choosing p too small
(e.g. p = 0.1) can lead to stopping very early. For this
work, we use {p} = {0.75, 0.76, . . . , 1.0}, but this may be
worth further exploration. See Figs. 4 and 5.
In addition to strong communities, weak communi-

ties have been defined [10]. A community is weak when
Min > 1

2Mout. We have found the usage of a “weak-to-
not” stopping criteria to be problematic. The impact of
a single agglomeration is so small that the community

will blissfully continue to grow, far past the appropriate
stopping point. Just as the strong stopping criteria is too
strong, a weak stopping criteria is too weak. See Sec. V
for further ideas, however.

Appendix B: Trailing Least-Squares

Inspired by plots of R and Mout, and in an effort to
increase accuracy when community structure is less fa-
vorable, we propose another stopping criteria, based on
fitting a polynomial to Mout (or R) to find local min-
ima/maxima. Suppose n nodes have been agglomerated,
fit y = ax2 + bx + c to the first n − 3 values of Mout.
Then extrapolate y to points n− 2, n− 1, n and test the
following:

1. parabola opens downward, a < 0 and,

2. Mout(i) > y(i), i = n, n− 1, n− 2 and,

3. n− 3 > −b/2a and,

4. Mout(n) ≥ Mout(n− 1) ≥ Mout(n− 2).

If all are satisfied, stop agglomerating (and remove the
final three nodes).
As shown in Fig. 8’s inset, when you pass the border

of the community, Mout will start to increase, while the
parabola, unaware of the next three values, continues
downward. This works whether the minima is a cusp or
just an inflection point, so one need not resort to testing
first versus second differences in Mout, etc. The fitting
also provides a degree of smoothing.
This criteria is somewhat involved and has several

semi-arbitrary factors: one could extrapolate to a dif-
ferent number of points, relax some of the constraints,
fit a different order polynomial, continue fitting until the
criteria ceases to be satisfied, etc. Our results indicate
that this criteria as chosen works well, but further refine-
ment is certainly possible. We also use this criteria by
fitting a line to R from the Clauset method, since Eq. (2)
tends to grow linearly in the first community. Both fits
have similar accuracy, as shown in Fig. 8.
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