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Abstract

The individual movements of large numbers of people are important in many contexts, from urban planning to disease
spreading. Datasets that capture human mobility are now available and many interesting features have been discovered,
including the ultra-slow spatial growth of individual mobility. However, the detailed substructures and spatiotemporal flows
of mobility – the sets and sequences of visited locations – have not been well studied. We show that individual mobility is
dominated by small groups of frequently visited, dynamically close locations, forming primary ‘‘habitats’’ capturing typical
daily activity, along with subsidiary habitats representing additional travel. These habitats do not correspond to typical
contexts such as home or work. The temporal evolution of mobility within habitats, which constitutes most motion, is
universal across habitats and exhibits scaling patterns both distinct from all previous observations and unpredicted by
current models. The delay to enter subsidiary habitats is a primary factor in the spatiotemporal growth of human travel.
Interestingly, habitats correlate with non-mobility dynamics such as communication activity, implying that habitats may
influence processes such as information spreading and revealing new connections between human mobility and social
networks.
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Introduction

Understanding human movement is essential for a range of

society-wide technological problems and policy issues, from urban

planning [1] and traffic forecasting [2], to the modeling and

simulation of epidemics [3,4,5]. Recent studies on mobility

patterns have shown that spatiotemporal traces are highly non-

random [6,7,8], exhibiting distinct dynamics subject to geographic

constraints [9,10,11,12,13,14]. Analytical models have been

developed to reflect individual mobility dynamics such as the

tendency to move back and forth between fixed locations on a

regular basis [15]. When examining populations, movement

patterns may be highly correlated with dynamics such as contact

preference [9,11], yet this has not been well studied at the

individual level. Previous work on human mobility has focused

primarily on simple measures that forego the majority of the

detailed information available in existing data. There is good

reason for this, as basic approaches tend to be most fruitful for new

problems. Yet these measures reduce an entire mobility pattern to

a single scalar quantity, potentially missing important details and

throwing away crucial information.

A number of approaches are available for studying the

geographic substructure of individual mobility. One route is to

perform spatial clustering [16] on the specific locations an

individual visits, potentially revealing important, related groups

of locations. However, such analysis is purely spatial, neglecting

the detailed spatiotemporal trajectories available for each person,

reducing their mobility to a collection of geographic points and

ignoring any information regarding the flows, or frequencies of

movement, between particular locations. At the same time, the

raw spatial distance separating two locations may not be

meaningful: a short walk and a short car trip typically cover very

different distances in the same amount of time, and the cognitive

and economic costs associated with air travel depend only mildly

(if at all) upon distance [17]. Modeling frameworks such as the

Theory of Intervening Opportunities [18] and the recently

introduced Radiation model [19] further argue that raw distances

are not necessarily the most effective determinant for travel. In this

work we show the importance of incorporating how frequently an

individual travels between two locations, which naturally accounts

for spatial and dynamic effects while revealing the underlying

spatiotemporal features of human mobility.

Results

Beginning from a country-wide mobile phone dataset

[20,7,21,8,15,22,23,24], we extract 34 weeks of call activity for a

sample population of approximately 90 thousand phone users.
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Each call activity time series encodes the spatiotemporal trajectory

of that user. (See Materials and Methods and File S1 for details

about the data.) For each user we construct a directed, weighted

mobility network capturing the detailed flows between individual

locations (represented using cellular towers). Examples of both

mobility networks and spatiotemporal mobility flows are shown in

Figs. 1A and B, respectively. The recurrent and repetitive nature

of human motion is clearly visible in Fig. 0B, where we explode

the user trajectories vertically in time. We apply to each user’s

mobility network an information-theoretic graph partitioning

method known as Infomap [25], which uses the flows of random

walkers to find groups of dynamically related nodes in directed,

weighted networks. We do not use spatial or distance information

in partitioning, instead Infomap mirrors the stochastic process

underlying human mobility flows; see File S1 Sec. S3 for details.

(Infomap’s underlying mechanism is further justified in this

context by the results of [22].) The groups of locations that we

discover, which we refer to as mobility ‘‘habitats,’’ will be shown to

be crucial to both the spatiotemporal dynamics of human motion,

and to the interplay between mobility and human interaction

patterns. We rank habitats in decreasing order of phone activity,

such that a user’s most frequently visited habitat is Habitat 1 or the

primary habitat. We observe that human mobility is almost

universally dominated by the primary habitat, where the majority

of user call activity occurs–and thus it incorporates both home and

work, home and school, or other major social contexts–along with

a number of less active subsidiary habitats (see Fig. 1C, File S1 Fig.

B, Sec. S3.2). We further see in Fig. 1D that most users possess 5–

20 habitats, while only approximately 7% of users have a single

habitat. Note that these habitats, unique for each member of the

population, differ greatly from existing work on partitioning

mobility or social connectivity [26,13,27], which instead focus

entirely on partitioning a single geographic network aggregated

from large populations.

Spatial characteristics
The spatial extent of a user’s total mobility pattern has been

shown to be well summarized by a single scalar quantity, the

radius of gyration, or gyradius, R2
g~vDri{rCMD2wi, where ri is

the spatial position of phone call i and rCM is the user’s center of

mass [7]. In addition to using the global gyradius we also compute

the reduced radius of gyration rg(h) for each habitat h, considering

only those locations and calls contained within that habitat. In

Fig. 2A we plot the population distributions of the first three

habitat’s rg, compared with the total gyradius Rg considering all

calls placed from all visited locations. This shows that the spatial

extent of habitats tends to be far smaller than the total mobility,

often by an order of magnitude, and that most users have a habitat

rg between 1–10 km. See also File S1 Fig. D. In Fig. 2B we study

the functional dependence of the primary habitat’s gyradius,

rg(h1), versus Rg. We uncover an intriguing power law scaling

relation characterized by two regimes, where rg(h1)*Ra
g with

a~1 for RgvR�&5 km, and a~1=3 for RgwR�. The linear

relationship below this critical radius R� indicates that those users

(roughly 8% of the population) are mostly characterized by a single

habitat. (In fact, only 54.8% of users with Rgv5 km have one

habitat, but that 97.6% of their calls on average occur within their

primary habitat.) But once a user’s range extends beyond this

critical 5 km cutoff (true for 92% of the population) a new regime

emerges where multiple habitats exist and tend to be far smaller

and more spatially cohesive than the total mobility (since av1).

(For users with Rgw5 km, only 2.9% have one habitat and the

primary habitat accounts for 78.7% of activity on average.)

Finally, in Fig. 2C we show the geographic distance d(h1,h2)

Figure 1. Habitats reveal the spatiotemporal substructure of human mobility patterns. (A) Spatial trajectories of two users, one traveling
to a large number of locations and another covering a smaller range. Node size indicates the amount of time spent at a particular location (as
quantified by mobile phone activity), node color represents the location’s habitat detected using Infomap (see Methods), and line width
approximates the number of trips between locations. Habitats are ordered by call volume such that Habitat 1 contains the most calls. (B) Exploding
the spatial trajectories from A in time (vertical axis), the recurrent nature of human mobility becomes evident, with a number of trips featuring both
consistent destinations and consistently repetitive occurrence (zoom). These features are the root cause of the high predictability that human motion
is known to possess. (C) The daily call dynamics of the three most active habitats, as well as the overall dynamics (summed over all habitats). The
primary habitat contains the majority of temporal activity. We see that User 1 tends to occupy his or her second and third habitats primarily at night,
while User 2 is more evenly distributed. (D) The distribution of the number of habitats per user. The median number of habitats is 11. Due to their
typical heterogeneity, we characterize population distributions using percentiles, proportional to the cumulative distribution.
doi:10.1371/journal.pone.0037676.g001

Structure and Social Aspects of Human Mobility

PLoS ONE | www.plosone.org 2 May 2012 | Volume 7 | Issue 5 | e37676



between the centers of mass of the two most heavily occupied

habitats, as a function of Rg. This also exhibits a power law

scaling, d(h1,h2)*Rb
g with b~0:81+0:02. These distances tend

to be far larger than the total Rg (gray line), indicating that the

magnitude of Rg is primarily determined by movement between

spatially cohesive and well separated habitats.

Temporal characteristics
Given the importance of habitats to the spatial extent of human

motion, one must ask: how do these habitats form and evolve over

time? To what extent are the temporal dynamics of human

movement reflected in the evolution of these habitats? Recently,

considerable effort has been undertaken to understand the

intriguing temporal features of human mobility, including the

previously observed ultra-slow growth in time t of Rg* log tð Þc,

with cw1 [7,15]. Given the contribution of habitats to the

magnitude of Rg, shown in Fig. 2, a primary question becomes:

how do habitats impact these temporal features? For example,

how do individual habitat rg’s evolve over time, compared with

that of the total Rg?

In Fig. 3 we study the temporal evolution of rg and Rg by

considering only those calls occurring up to time t, from either

individual habitats or all locations, where t~0 is the time of the

user’s first call. In Fig. 3A we plot the time series of rg(h1) and Rg,

normalized by the final values of each respective series. We

observe that rg saturates at its final value more quickly than the

total mobility’s Rg. To further quantify this saturation, we plot in

Fig. 3B the ratio between rg(h1) and Rg as a function of time, for

groups of users with different final values of Rg. We observe

increasingly rapid saturation of rg as the total Rg increases. This

implies that the primary habitat is explored more quickly than the

total extent of a user’s mobility pattern and that users who cover

large distances explore their primary habitat more quickly relative

to their total mobility than users who traverse relatively smaller

regions. This is particularly interesting as one may initially expect

such exploration to be at a constant rate relative to their total Rg.

In Fig. 3C we study the temporal evolution of rg(t) for the first

three habitats, averaged over users with Rg&30 km. We observe

approximately logarithmic growth, rg(h1)* log t, for the primary

habitat (slower growth than that observed in [7,15]) while

subsidiary habitats’ gyradii *( log t)d, with dw1 (growth more

similar to [7,15]). However, this analysis neglects an important

detail: users do not begin exploring all of their habitats at the same

time. Therefore in Fig. 3D we plot the same population-averaged

radii, but we now individually shift each user’s time series of rg(h)
by a time t0(h), the time the user first entered habitat h, not simply

made his or her first global call. Doing so accounts for the waiting

times for users to visit habitats within our observation window.

With this crucial correction we reveal for all habitats purely

logarithmic growth in rg, implying a universality in the exploration

of habitats (which differ only in their overall spatial scale, with the

primary habitat tending to be the most compact). Thus, the

polylogarithmic growth of Rg, where Rg is initially small then

grows faster than logarithmic in time, is primarily due to the

temporal delay it takes users to exit their respective primary

habitats and then rapidly traverse a relatively large distance to

reach their other habitats. We further study these habitat entrance

times in File S1, Sec. S3.2 and Fig. E.

Social characteristics
Finally, a major question in the realm of mobility and human

dynamics is the connection between spatiotemporal dynamics and

other activity patterns [9]. For example, information spreading in

heterogeneous systems of agents is a process that involves both the

spatiotemporal mobility of the agents and their long-range

communication activities. In this context, would the currently

occupied habitat affect or be affected by how a user chooses a

particular communication partner to engage? Such questions can

also be addressed with mobile phone data, where phone

communications capture a primary mode of information diffusion

on the underlying social network [20]. To begin, we first recall a

result from González et al. [7]. They found that users occupy

locations following a Zipf law, where the probability Pr(L) to visit

the L-th most frequented location follows Pr(L)*L{1:5. We

reproduce this result in Fig. 4A. Interestingly, we discover (Fig. 4B)

a potentially identical mechanism for how users choose to contact

their communication partners, i.e. the probability Pr(C) for a user

to call his or her C-th most contacted partner also follows

Pr(C)*C{1:5. See also [28]. Finally, a number of users within our

population have contacts that are also within the population,

meaning we have habitat information for both users. An

interesting question is: how similar are the habitats of users in
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close communication, and will this similarity be lower for pairs

with less frequent interaction? We measure the similarity between

the primary habitats of pairs of users interacting with one another

by computing the relative number of locations the habitats have in

common (see Methods and materials). In Fig. 4C we plot this

Habitat similarity as a function of contact rank C. We see that,

despite the Zipf law in Fig. 4B, users’ primary habitats tend to be

highly similar to the primary habitats of their most contacted ties.

Nevertheless, there is little dependence on contact rank: one

partner that is contacted an order of magnitude less often than

another has almost the same primary habitat similarity. In other

words, it takes very little communication to generate considerable

habitat overlap [10]. Meanwhile, control habitats, generated by

randomly distributing each user’s visited locations between their

habitats (see Methods and materials), show smaller similarity and

no effective trend.

We further characterize the ‘‘interaction concentration’’ of a

user by introducing PMFC, the probability that the next call placed

by the user goes to that user’s Most Frequent Contact, the partner

that is most often in contact with the user. Users with a small

PMFC tend to distribute their calling activity more evenly across

their partners, while users with large PMFC are more concentrated

and focus much of their attention upon a single individual. In Fig. 5

we study how PMFC depends on the properties of a user’s mobility

pattern. First, in Fig. 5A we show the distribution of PMFC over

the user population. Most users possess 0:1ƒPMFCƒ0:4 while

very few users have either very small or very large PMFC. In Fig. 2B

we connect this interaction concentration with the user mobility

patterns by showing that the mean PMFC decays as the number of

habitats a user visits grows. This means that users who travel

broadly, leading to complex mobility patterns and multiple

habitats, tend to distribute their communication activity more

uniformly over their contacts. Next, in Fig. 5C we quantify how

PMFC varies with the total gyradius Rg. We see an intriguing

connection to a previous result: For users with small Rg, the PMFC

is small but grows as Rg grows. This continues until Rg&R�, the

same critical radius that appeared in Fig. 2B. Above R�, we see

that PMFC now slowly decays with Rg. To further understand this,

we plot in Fig. 5D the fraction of reciprocated contacts freciprocal

(see Materials and methods) as a function of Rg. The plot exhibits

a roughly similar trend as Fig. 5C: freciprocal grows while RgvR�
then, above the same critical radius, freciprocal decays slowly with

Rg. This decay relative to the peak value at Rg&R� is slower for

freciprocal than for PMFC.

Taken together, Figs. 5C and D show that when RgwR�, user

communication activity–both how much they concentrate upon

their MFCs and how many of their ties are reciprocated–depends

only weakly on Rg. However, those users with low Rg tend to show

distinctly different behavior, both being less concentrated on their

MFCs compared with most users, and making a larger number of

non-reciprocated contacts (File S1 Fig. C). Since users with

RgvR� primarily possess a single habitat, these results imply that

the mechanism governing how users distribute their activity over

their contacted partners may differ for those users with a single

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1  10  100  1000

〈 r
g(

t)
〉 [

km
]

t [h]

C
Habitat 1
Habitat 2
Habitat 3
~ ln(t)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1  10  100  1000

〈 r
g(

t-
t 0

) 〉
 [k

m
]

t - t0 [h]

D

 1

 2

 3

 4

 1  10  100  1000

〈 r
g(

t ⎢
h 1

) 〉
 / 

〈R
g(

t)
〉

t [h]

B
Rg ≈ 10 km
Rg ≈ 30 km
Rg ≈ 100 km

 0.2
 0.4
 0.6
 0.8

 1

 0  1000  2000  3000  4000  5000

〈r
g(

t)
〉

t [h]

Rg ≈ 100 km

All locations
Habitat 1

 0.4

 0.6
 0.8

 1A
Rg ≈ 30 km

Figure 3. Temporal evolution of human mobility. (A) The time
evolution of rg(h1) compared with Rg , where both are normalized by
their final values at the end of the observation window. We see that the
primary habitat tends to reach saturation faster than the overall
gyradius, indicating different temporal dynamics. (B) To quantify the
saturation rate, we plot the ratio of the two curves from A, for groups of
users with different Rg . We see that the primary habitat saturates more
quickly as the overall Rg grows. Solid lines of the form *( log t)E

provide a guide for the eye. (C) The unnormalized growth in habitat
size for the first three habitats. The primary habitat shows a distinct,
approximately logarithmic temporal scaling. The other habitats show a
longer delay before rg begins to grow polylogarithmically. (D) Given
this delay, we now shift the time series of rg(h) for each habitat by t0(h),
the time when the user first entered habitat h. Doing so we recover
pure logarithmic scaling for all habitats, rg* log t{t0ð Þ, indicating that
a major factor in the scaling of human mobility is the delay it takes for a
user to transition to his or her non-primary habitats.
doi:10.1371/journal.pone.0037676.g003

10-3

10-2

100

100 101 102

P
r(

L)

Location rank, L

A
 5 locations
10 locations
20 locations
40 locations
80 locations

10-3

10-2

100

100 101 102

P
r(

C
)

Contact rank, C

B
 5 contacts
10 contacts
20 contacts
40 contacts
80 contacts

 0

 0.1

 0.2

 0.3

 1  2  3  4  5  6  7  8  9  10

H
ab

ita
t s

im
ila

rit
y

Contact rank, C

C
Primary habitats Control habitats

Figure 4. Contact activity and habitats. (A) The Zipf law governing
the probability Pr(L) for a user to visit his or her L-th most visited
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habitat compared with those users whose mobility leads to

multiple habitats. We used Kendall rank correlation and

associated hypothesis tests [29] to verify the statistical validity of

the observed relationships. See File S1 Sec. S6 and Table A for

hypothesis tests between these and additional measures.

The mobile phone data also provides demographic information

for the majority of users, specifically self-reported age and gender.

In File S1 Sec. S4 we study the results of Fig. 5 after decomposing

the sample into age and gender groups. One may expect these

results to change when focusing on these different groups. Yet in

Figs. F and G we find qualitatively similar results to Fig. 5 with

only small differences: PMFC tends to be slightly higher for women

than for men, and increases with user age. After considering these

demographic dependencies on PMFC, we observe the same

relationships between communication activity and mobility.

Discussion

We have shown that accurately understanding human mobility

requires an analysis using the complete spatiotemporal flows

captured for each user. Basic measures such as the gyradius Rg

constitute an excellent starting point, but such single scalar

quantities simply cannot capture the full complexity of an

individual mobility pattern. As the quality and quantity of

available data increases, we expect our understanding of the

various factors shaping human mobility to continue to improve.

Given that users spend the majority of time occupying their

primary habitats, understanding the detailed features of the

primary habitat will be crucial for applications such as search

and rescue during emergencies [23] or containing the spread of

epidemic diseases [3,4,5], since most users will be within their

primary habitats at the onset of such events. Meanwhile, detailed

information regarding unusual trips away from the primary

habitat may prove useful both for curtailing diseases and for

optimizing transportation infrastructure and energy usage. Like-

wise, the universal logarithmic scaling laws for intra-habitat

mobility uncovered in Fig. 3D are not accounted for by current

modeling frameworks [15]; more effort may be necessary to

acceptably model the microscopic structure of individual human

motion. The connections we reveal between communication

dynamics and human mobility may have important consequences

for understanding the spread of information or rumors through a

population, as such processes may spread both spatially and

socially [30]. Further investigation of such connections may prove

fruitful in a number of areas, including information diffusion and

social contagion.

Materials and Methods

Dataset
We use a large-scale, de-identified mobile phone dataset,

previously studied in [20,7,21,8,15,22,23]. We sample approxi-

mately 90 thousand users from the total dataset, according to the

activity criteria introduced in [8] (see also File S1 Fig. H). We

retain nine months of phone activity for each user. A ‘‘call’’ is

either a text message or a voice call, and we use the cellular

tower that handled the communication to represent the location

L(t) of a call made at time t. Call times are kept at an hourly

resolution. The coordinates of these towers are used to compute

the radii of gyration [7]. Phone call recipients determine the

communication partners of a user. Since a single phone call

between two individuals may not represent a meaningful tie, we

consider user B to be a partner of user A only if we observe at

least one reciprocated pair of calls (A called B and B called A)

[20]. We do not require user B to be in our sample population,

except when we compute habitat similarity. We define the

fraction of reciprocal ties for user A as

freciprocal(A)~
X

B
X (A,B)X (B,A)=

X
B

X (A,B) where

X (A,B)~1 if A contacted B at least once, and zero otherwise.

Finding mobility habitats
For each user we convert their trajectory j~fL(t1),L(t2),:::g,

with tiwti’ for iwi’, into a weighted digraph where the weight on

link Li?Lj represents the number of times the ordered pair of

locations (Li,Lj) was observed in j (File S1 Fig. A). The

community discovery method Infomap [25] was applied to each

digraph, using the default parameters (10 attempts and self-loops

ignored). The discovered groups of locations are the habitats for

that user. Habitats are ranked by total number of calls.

Habitat similarity
For a user A with contact B, both present in our sample, we

define the similarity S(A,B) between their primary habitats to be

the Jaccard coefficient between the sets of locations comprising

those habitats. If these sets are disjoint S(A,B)~0, whereas

S(A,B)~1 if they overlap completely.
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PMFC between approximately 0:1 and 0:4. (See also Fig. 4b.) (B) To
connect the concentration with user mobility, we study how the mean
PMFC varies with the number of habitats each user possesses. We see
that PMFC gradually decays as the number of habitats grows, indicating
that broadly traveled individuals tend to more evenly distribute their
calls over their partners. (C) Studying PMFC as a function of Rg , we
uncover an intriguing relationship. For users with particularly small
mobility ranges, PMFC is small but grows as Rg grows. This continues
until Rg&R� , the same critical radius size observed in Fig. 2b. The mean
PMFC then decays for RgwR� . Surprisingly, this implies that the
distribution of call activity over a user’s partners exhibits different
behavior depending on whether that user possess one mobility habitat,
or many habitats. (D) The fraction of reciprocated contacts freciprocal as a
function of Rg shows a trend similar to PMFC. Not only do those users
with small Rg tend to be distinctly less socially concentrated compared
with most users, they also tend to make more non-reciprocated
contacts (see File S1 Fig. C for details). Error bars indicate +1 s.e.
doi:10.1371/journal.pone.0037676.g005
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Controls
It is important to understand the significance of the results we

have presented here, in particular whether the results associated

with the habitats we find are meaningful. We compute null or

control habitats, generated for each user, by randomly assigning

that user’s visited locations to habitats while preserving the

number of habitats and the number of locations within each

habitat. This strictly controls for the habitat size distributions

while testing the effects of habitat membership. In File S1 Fig. I

we further show that the pure logarithmic time evolution is

absent in control habitats, indicating that the temporal evolution

we observe in Fig. 3D is not due to the relative sizes (numbers of

locations) of the habitats, nor to simply the number of habitats,

but due more fundamentally to their spatial structure and the

spatiotemporal flows of the users. In Fig. 1 we see that these

control habitats have lower similarity than the actual habitats.

See File S1 Sec. S6 for details.

Supporting Information

File S1 Supplementary text and figures.
(PDF)
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