
RESEARCH ARTICLE

Efficient crowdsourcing of crowd-generated

microtasks

Abigail Hotaling1,2, James P. BagrowID
1,2*

1 Department of Mathematics & Statistics, University of Vermont, Burlington, VT, United States of America,

2 Vermont Complex Systems Center, University of Vermont, Burlington, VT, United States of America

* james.bagrow@uvm.edu

Abstract

Allowing members of the crowd to propose novel microtasks for one another is an effective

way to combine the efficiencies of traditional microtask work with the inventiveness and

hypothesis generation potential of human workers. However, microtask proposal leads to a

growing set of tasks that may overwhelm limited crowdsourcer resources. Crowdsourcers

can employ methods to utilize their resources efficiently, but algorithmic approaches to effi-

cient crowdsourcing generally require a fixed task set of known size. In this paper, we intro-

duce cost forecasting as a means for a crowdsourcer to use efficient crowdsourcing

algorithms with a growing set of microtasks. Cost forecasting allows the crowdsourcer to

decide between eliciting new tasks from the crowd or receiving responses to existing tasks

based on whether or not new tasks will cost less to complete than existing tasks, efficiently

balancing resources as crowdsourcing occurs. Experiments with real and synthetic crowd-

sourcing data show that cost forecasting leads to improved accuracy. Accuracy and effi-

ciency gains for crowd-generated microtasks hold the promise to further leverage the

creativity and wisdom of the crowd, with applications such as generating more informative

and diverse training data for machine learning applications and improving the performance

of user-generated content and question-answering platforms.

1 Introduction

Crowdsourcing platforms enable large groups of individual crowd members to collectively

provide a crowdsourcer with new information for many problems [1, 2] such as completing

user surveys [3], generating training data for machine learning models [4, 5], or powering citi-

zen science programs [6, 7]. The work performed by the crowd is often used by researchers

and firms to address problems that remain computationally challenging. Yet incorporating

humans into a problem domain introduces new challenges: workers must be paid and even

volunteers should be properly incentivized, bad actors or unreliable crowd members should be

identified, and care must be taken to efficiently and accurately aggregate the response of the

crowd. Algorithmic crowdsourcing focuses on computational approaches to these challenges,

allowing crowdsourcers to maximize the accuracy of the data generated by the crowd while

also efficiently managing the costs of employing the crowd.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0244245 December 17, 2020 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Hotaling A, Bagrow JP (2020) Efficient

crowdsourcing of crowd-generated microtasks.

PLoS ONE 15(12): e0244245. https://doi.org/

10.1371/journal.pone.0244245

Editor: Haoran Xie, Lingnan University, HONG

KONG

Received: August 5, 2020

Accepted: December 4, 2020

Published: December 17, 2020

Copyright: © 2020 Hotaling, Bagrow. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data used are

publicly available as described in manuscript

references [22–24].

Funding: This material is based upon work

supported by the National Science Foundation

under Grant No. IIS-1447634 (JB). The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-4614-0792
https://doi.org/10.1371/journal.pone.0244245
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244245&domain=pdf&date_stamp=2020-12-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244245&domain=pdf&date_stamp=2020-12-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244245&domain=pdf&date_stamp=2020-12-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244245&domain=pdf&date_stamp=2020-12-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244245&domain=pdf&date_stamp=2020-12-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244245&domain=pdf&date_stamp=2020-12-17
https://doi.org/10.1371/journal.pone.0244245
https://doi.org/10.1371/journal.pone.0244245
http://creativecommons.org/licenses/by/4.0/


Despite the potential challenges, engaging a crowd is often invaluable, as crowd participants

are capable of creative ideation in a way that computational methods are not, and they can

generate novel ideas or new tasks beyond those designed by the crowdsourcer. Crowd-gener-
ated microtasks are an important avenue for this creativity to manifest [8, 9]: The members of

the crowd may be asked to not simply provide responses to given tasks, but also to propose

new tasks to give to other crowd members. Combining task proposal with microtask work pro-

vides the crowd a simple vehicle to introduce their own new ideas and hypotheses [8], while

still leveraging the known efficiency of microtask work [10].

Crowd-generated microtasks have been used for a number of practical crowdsourcing

applications. Examples include feature generation for machine learning methods [5, 11], used

to explore novel predictors of childhood obesity and home energy use; the ‘verify’ step of Soy-

lent’s Find-Fix-Verify algorithm [12], enabling prose writing to leverage microtask work

within a crowd-powered word processor; crowdsourced creation of knowledge networks [8,

13], allowing for an improved understanding of causal attribution; and contributing new ques-

tions to a growing user survey [14], used to generate and vote upon novel ideas for New York

City’s government to improve the welfare of its citizens. In all these examples, as new content

are generated, the crowdsourcer is left to manage a growing set of simple, associated micro-

tasks such as answering multiple-choice questions or voting for proposed ideas.

Another popular application of crowd-generated microtasks is question-answering (QA)

websites, online communities where members can pose new questions they wish answered

and provide answers to questions posed by other members [15, 16]. Although asking and

answering questions are often open-ended tasks, microtasks are a key component of adminis-

trating a QA platform, with the platform provider instantiating any number of additional

microtasks for purposes such as labeling or classifying content [9]. One example of such a

microtask, which is often embedded as part of other tasks, is a yes/no survey showing members

a question paired with a user-submitted answer and asking if this question is now sufficiently

answered.

Allowing the crowd to generate tasks can lead to a growing set of tasks and this growth,

even slow growth, can eventually overwhelm the crowdsourcer’s resources and the majority of

tasks will remain unseen by the crowd [8]. Thus a crowdsourcer using crowd-generated micro-

tasks must use resources efficiently. Algorithmic crowdsourcing addresses efficiency with

methods for the crowdsourcer to allocate tasks to the crowd and efficiently and accurately

infer answers for given microtasks [17, 18]. However, most allocation algorithms assume a

fixed set of tasks to distribute to the crowd. Our goal here is to study how algorithmic crowd-

sourcing methods can best be used for crowdsourcing problems with crowd-generated micro-

tasks. We introduce a decision process—cost forecasting—that enables a crowdsourcer to

decide online whether to grow the set of tasks or receive responses to existing tasks. For prob-

lems where the crowdsourcer can make this choice, this provides a means to apply efficient

algorithms to crowd-generated microtasks, allowing the crowdsourcer to achieve high quality

work on tasks even when the set of tasks is open-ended.

The rest of this paper is organized as follows. In Sec. 2 we provide background describing

the crowdsourcing problem model we consider, existing methods for crowdsourcing crowd-

generated microtasks, and prior work on efficient crowdsourcing (budget allocation) algo-

rithms. We introduce cost forecasting in Sec. 3 and derive probabilistic estimators using it on

our problem model. We report in Sec. 4 (Materials and methods) and Sec. 5 (Experiments)

our results using real and synthetic crowdsourcing data to investigate the accuracy of collected

data when crowdsourcing with cost forecasting. We also describe in Sec. 4 how to simulate

crowd-generated microtasks using pre-existing crowdsourced datasets. Lastly, we conclude in

PLOS ONE Efficient crowdsourcing of crowd-generated microtasks

PLOS ONE | https://doi.org/10.1371/journal.pone.0244245 December 17, 2020 2 / 18

https://doi.org/10.1371/journal.pone.0244245


Sec. 6 with a discussion of this work and its applications, including the limitations of our study

and promising directions for future research.

2 Background

Here we describe the problem model we employ in our study to represent crowdsourcing

tasks, describe prior research on crowd-generated microtask crowdsourcing, as well as provide

details on existing methods for crowdsourcing microtask data under budget constraints.

2.1 Problem model and existing work

We focus on problems where crowd members propose binary labeling tasks as a representative

model for individual microtasks, as is standard practice in algorithmic crowdsourcing. In the

context of crowd-generated microtasks, workers can introduce novel microtasks for other

workers to label, leading, perhaps after appropriate validation, to a growing set of labeling

tasks. For example, when crowdsourcing causal attributions [13], a worker may introduce a

novel microtask by posing a new question (Do you think that viruses cause sickness?) which

then becomes a new yes/no binary labeling microtask for other crowd workers. While binary

labeling is a simplification of the nuance of many real-world crowdsourcing tasks, binary label-

ing can represent image categorization tasks or even basic survey questions, and can be readily

generalized to categorical labeling tasks such as multiple choice questions, although those tasks

can also be binarized (see [19]).

Let zi 2 {0, 1} be the true but unknown label for task i and let yij be the response provided

by worker j when given task i. We define the associated task parameter θi� Pr(zi = 1) as the

unknown probability that the true label for task i is 1. Multiple workers are typically asked to

respond to a given task, allowing us to aggregate their responses for improved accuracy; we

assume that workers respond independently so that the {yij} are iid for a given i. To track the

response tallies for task i, let ai and bi be the total number of ‘+1’ and ‘0’ responses, respectively,

for i, and let ni = ai + bi be the total number of responses received for i. As responses are gath-

ered, these tallies will change, so ai, bi, and ni are considered functions of time t, where we

track ‘time’ as the number of responses received across all workers and tasks (t = ∑i ni(t)). We

can estimate θ with ŷ ¼ ai=ni. The final goal is to infer the true label of the task accurately, i.e.,

develop ẑi � zi using the responses {yij} for task i.
Most work on efficient crowdsourcing assumes a fixed set of tasks but some studies have

considered task growth. The work of Sheng, Provost & Ipeirotos [20] considers the idea of

soliciting new training examples (labeling tasks) from the crowd, and discusses strategies for

how often to request new tasks depending on the cost of receiving a new task relative to the

cost of receiving a response to an existing task. However, the focus on their work is on how

many responses a single task requires, as multiple responses are typically used to overcome

noisy workers, and they do not consider the cost to complete a task (something we will focus

on; Sec. 3), only the cost on a per-response basis. Likewise, the recent work of Liu and Ho [9]

studies task growth using a multi-armed bandit approach, where the arms of the bandit

increase over time. They assume the crowdsourcer is not able to control when new tasks are

generated, however, and neither study considers the use of efficient allocation methods for

guiding workers to tasks when costs are constrained by a budget. Of course, returning to the

example of a QA platform, users typically submit questions on their own, but any QA site can

implement an approval process allowing the site to control the rate of new questions. To the

best of our knowledge, crowdsourcing a growing set of tasks when efficient allocation methods

are used to complete those tasks has not been studied.

PLOS ONE Efficient crowdsourcing of crowd-generated microtasks

PLOS ONE | https://doi.org/10.1371/journal.pone.0244245 December 17, 2020 3 / 18

https://doi.org/10.1371/journal.pone.0244245


2.2 Efficient allocation methods

Often a crowdsourcer must accurately infer the zi labels under budget constraints, as only

finite resources (such as time or money) will be available to support the crowd. For simplicity,

we assume a crowdsourcer has a total budget of B requests that can be elicited from the crowd.

The budget then imposes the constraint ∑i ni(t)� B for all t� B. This constraint becomes espe-

cially challenging for a growing set of tasks, since the finite budget must be spread out over an

increasing number of individual tasks.

Crowdsourcing allocation methods [18, 19, 21] have been developed to efficiently and accu-

rately infer labels for tasks under a finite budget. These methods choose which tasks to give to

workers with a goal of maximizing the efficiency and accuracy of the task labels the crowdsour-

cer will infer from the worker responses. In this work, we apply the Optimistic Knowledge

Gradient (Opt-KG) method [18]. Opt-KG works to optimize accuracy by implementing a

Markov Decision Process that chooses tasks with the largest expected improvement in accu-

racy. This method has shown improvement in accuracy when applied to finite budget crowd-

sourcings [18]. Opt-KG focuses on optimizing overall accuracy, which makes it particularly

beneficial for applying to crowd-generated microtasks and is the reason we focus on it in this

work (see also our discussion of Opt-KG and other methods in Sec. 6). Further, Opt-KG has

no parameters that need to be tuned or chosen by the crowdsourcer.

Opt-KG and other allocation methods assume a fixed set of N tasks. The goal of our work

here is to enable an efficient allocation method to support crowdsourcing problems where the

crowd can provide new tasks to the crowdsourcer, leading to a set of tasks that grows over the

duration of the crowdsourcing.

3 Cost forecasting

Here we introduce a method to enable efficient allocation methods such as Opt-KG to work

with crowd-generated microtasks. First, we extend the traditional binary labeling model for a

fixed set of tasks to an open-ended problem where the crowdsourcer begins with a small seed

of tasks that grows as the crowd generates novel tasks. We then describe the components of

cost forecasting including cost estimators for how many responses are needed to complete

tasks and a decision rule (Growth Rule) based on those costs that allows the crowdsourcer to

choose whether a crowd worker should work on an existing task or propose a new task.

3.1 Model for crowd-generated microtasks

The problem model given above (Sec. 2.1) describes each of a fixed set of N tasks. Typically,

allocation methods assume there is a fixed number of tasks that a crowdsourcer wishes to dis-

tribute to workers. However, in this work we consider task growth where the number of tasks

grows as new tasks are generated by the crowd. Growing tasks can represent the submission of

new questions to a question-answering site, for example, while responding to a task represents

a user answering an existing question or more simply flagging an existing question-answer

pair as correct.

Let Nt be the total number of tasks that exist at time t, where N0 initial seed tasks are used to

begin the crowdsourcing and we track time such that each timestep represents one request

made by the crowdsourcer. When a new task is desired at timestep t, a worker will be

prompted to propose a new task, which is then added to the set of all tasks, and Nt+1 = Nt + 1.

Later, other workers can submit responses to this new task so that a label for that task can be

inferred. In this model, the cost of a new task generated by the crowd and the cost of a response

is defined to be ft and fr units, respectively. Depending on problem-specific considerations, the

crowdsourcer can set ft = fr or let the costs differ (see also [20]). In this work, we define cost

PLOS ONE Efficient crowdsourcing of crowd-generated microtasks

PLOS ONE | https://doi.org/10.1371/journal.pone.0244245 December 17, 2020 4 / 18

https://doi.org/10.1371/journal.pone.0244245


units in number of responses, taking ft = fr = 1; we discuss ft 6¼ fr in our discussion. In practice,

an approval process may also be needed to guarantee requirements for the new task such as

appropriateness, novelty, or importance. For simplicity, here we assume this process has

already been implemented.

3.2 Forecasting the cost to complete a task

Suppose at some time t during the crowdsourcing that task i has already received ni(t) inde-

pendent (0, +1) responses, of which ai(t) are +1 responses. Our current estimate of the task’s

associated parameter θi is ŷ iðtÞ ¼ aiðtÞ=niðtÞ. We can decide if task i should be labeled +1 or

labeled 0 based on whether ŷ i > 1=2 or ŷ i < 1=2, but we want to minimize the probability of

giving i the wrong label. This may require waiting until more responses to i are gathered, so a

conclusion can be drawn more safely, but we also want to avoid wasting additional responses

on tasks that we can already label i with an acceptable accuracy or on tasks that are too difficult

(or too expensive) to answer accurately. Thus, we need to incorporate our uncertainty in ŷ

given the collected data.

In general, for n independent samples of a Bernoulli random variable, the probability that

our estimate ŷ differs from the true value θ by at least � is bounded by Hoeffding’s Inequality:

Prðjŷ � yj � �Þ � 2e� 2n�2 : ð1Þ

This inequality allows us to decide a value for this probability and then estimate the mini-

mum number of labels needed to ensure that probability. Suppose we want the probability that

we are off by more than � to be no more than δ. Then at least

n �
lnð2=dÞ

2�2
ð2Þ

responses are needed to provide a bound on δ. (Note that tighter bounds than Hoeffding’s

may be used, but for simplicity here we focus on Eq (1); see the Discussion for more.).

Our crowdsourcing goal for a given task is to determine if the unknown label z is 1 or 0 (for

now we suppress the dependence on task index i and timestep t). The difference between our

current estimate ŷ and 1/2 represents our weight of evidence towards this decision. If we are

confident to some degree that our estimate ŷ is different from 1/2, then we are able to conclude

the label of the task based on whether ŷ > 1=2 or ŷ < 1=2 and when we can draw that conclu-

sion we can also deem the task complete. Using Eq (2) and our current estimate with n
responses, we can then estimate how many additional responses m we need until our confi-

dence interval (or margin of error) does not include 1/2:

m �
lnð2=dÞ

2 a
n �

1

2

� �2
� n: ð3Þ

Eq (3) shows us that the closer the task’s parameter θ is to 1/2, the more costly the task will

be in terms of requiring more responses to distinguish if the label should be 0 or 1. Of course,

this estimate may be inaccurate as it relies on the current value of ŷ ¼ a=n at n responses. In

reality, as more responses are gathered, ŷ will be revised. These updated estimates can be auto-

matically incorporated into this equation as new responses are received, yielding improved

forecasts for m.

However, Eq 3 is not valid when ŷ ¼ 1=2. In this scenario, we can ask: what if we receive

our next response and it is +1 or it is 0? Since all we currently know in this scenario is

PLOS ONE Efficient crowdsourcing of crowd-generated microtasks

PLOS ONE | https://doi.org/10.1371/journal.pone.0244245 December 17, 2020 5 / 18

https://doi.org/10.1371/journal.pone.0244245


ŷ ¼ 1=2, we should assume either outcome is equally likely, giving a revised estimate ŷ ¼

a=ðnþ 1Þ (if the new response is 0) or ŷ ¼ ðaþ 1Þ=ðnþ 1Þ (if the new response is +1).

Thankfully, ðŷ � 1=2Þ
2

is the same in both cases, and so plugging either into Eq (3) will give

the same estimate for m:

m �
lnð2=dÞ

2 a
nþ1
� 1

2

� �2
� n � 1;

ð4Þ

where the −1 counts the additional label we assume we will receive.

In summary, we can estimate the number of additional responses m needed to complete a

task using

m �

lnð2=dÞ

2 a
n�

1
2ð Þ

2 � n if a=n 6¼ 1=2;

lnð2=dÞ

2 a
nþ1
� 1

2ð Þ
2 � n � 1 if a=n ¼ 1=2:

8
>><

>>:

ð5Þ

Once a task’s ŷ has been shown to be different statistically from 1/2, the additional cost is

m� 0 (no additional responses are needed). To use in subsequent sections, we define the set

of available tasks M(t) as those where additional responses are needed: M(t) = {i: mi(t)> 0},

where (suppressing the dependence on i and t) mi(t) is given by Eq (5).

3.3 Deciding when to request a new task

The ability to estimate the cost to complete a task allows us to introduce a simple decision rule

for when to request new tasks: request a new task when the expected cost to complete a new task
is less than the estimated cost to complete the currently available task that is closest to
completion.

Specifically, let i 2 [1, . . ., Nt] index the Nt currently available tasks, and let mi be our cur-

rent estimate for the cost to complete task i. Let the expected cost to complete a new, unseen

task be E[nj] (we compute this below). Comparing the {mi} with E[nj] then informs our deci-

sion rule for growing the set of tasks.

To decide whether or not to request a new task at some time t, we study two specific Growth
Rules (GRs): Request a new task when

E½nj� < minfmig Growth Rule I ðGR IÞ ð6Þ

E½nj� < medianfmig Growth Rule II ðGR IIÞ; ð7Þ

where the minimum and the median are taken over the set of tasks for which additional

responses are needed at time t, M(t). We include the second rule (GR II) to provide a poten-

tially less extreme counterpoint to GR I in that using the median as a decision point may be

less influenced by outlier tasks than the minimum.

The intuition behind these growth rules is as follows. As the crowd works on completing

the currently available tasks, inexpensive tasks (those with θ far from 1/2) will finish first, and

soon only expensive tasks (those with θ close to 1/2) will remain. Eventually, the remaining

tasks will be costly enough that the crowdsourcer will be better off taking the chance on a

brand new task. Our experiments (Secs. 4 and 5) investigate using these rules to elicit new

tasks during crowd-generated microtask crowdsourcing.

PLOS ONE Efficient crowdsourcing of crowd-generated microtasks

PLOS ONE | https://doi.org/10.1371/journal.pone.0244245 December 17, 2020 6 / 18

https://doi.org/10.1371/journal.pone.0244245


3.4 Estimating the cost to complete an unseen task

Given the growth rules introduced in Eqs (6) and (7), a question remains: how can we estimate

the expected cost to complete a task j when the task is unseen or has no responses (i.e., aj = nj

= 0)? One option is to track the mean completion cost of previously completed tasks and use

that for E[nj]. Another option is to track the mean parameter ŷ of previously completed tasks

E½ŷ� and use that mean within Eq (5) to estimate the completion cost. The former uses more

data, but the latter option may be preferable as the GRs are then comparing two estimated

costs instead of one observed cost and one estimated cost—if the estimates are biased then

comparing two estimates may prevent or at least limit the bias from having a harmful impact.

However, here we take a simpler approach focused on computing the expected cost from only

a given prior distribution of θ.

Given a prior distribution P(θ) for task parameters, we can estimate the expected minimum

cost to complete unseen tasks if they are sampled from that prior:

E½n� �
Z 1

nmin

nPðnÞdn; ð8Þ

where nmin� 2ln(2/δ) is the expected minimum cost for the ideal case of θ = 0 or θ = 1. Here

P(n) can be derived by performing a change-of-variables on the prior distribution P(θ).

Unfortunately, E[n] diverges for any P(θ) that assigns sufficient probability at or near θ = 1/

2, as tasks at that θ will on average never be completed. To ensure convergence, we assume a

bound is used for the maximum amount of responses nmax that should be spent on a given

task, and tasks i that reach ni� nmax without being deemed complete are abandoned. Although

here we used this bound only theoretically (when computing E[n]) since Opt-KG itself helps

to prevent over-spending [18], in practice this bound can prevent a growth in sunk costs

where expensive tasks consume an inordinate amount of the crowdsourcer’s budget. We

explore the effects of this bound below.

Using this bound, the expected minimum cost to complete unseen tasks can be estimated:

E½n� ¼ nmaxZ
ffiffiffi
2
p
þ 2ð1 � Z

ffiffiffi
2
p
Þ

Z nmax

nmin

nPðnÞdn ð9Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffinminnmax
p

ð2 � ZÞ � nminð1 � ZÞ; ð10Þ

where Z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nmin=nmax

p
and the second line holds for a uniform (prior) distribution of θ.

Finally, Eq (10) for E[n] (or Eq (9) for a different prior) and Eq (5) for additional costs {mi}

can be used in our Growth Rules, Eqs (6) and (7), to perform cost forecasting for crowd-gener-

ated microtask crowdsourcing.

4 Materials and methods

Here we describe the real and synthetic crowdsourcing datasets we apply cost forecasting to,

how to perform crowd-generated crowdsourcing on these data, and we introduce a non-

growth baseline control to understand the performance of cost forecasting.

4.1 Datasets

We study three crowdsourcing datasets. These data were not generated using an efficient allo-

cation algorithm, and so it has become standard practice to evaluate such algorithms with

these data [8, 19]— since labels were collected independently, one can use an allocation

PLOS ONE Efficient crowdsourcing of crowd-generated microtasks

PLOS ONE | https://doi.org/10.1371/journal.pone.0244245 December 17, 2020 7 / 18

https://doi.org/10.1371/journal.pone.0244245


algorithm to choose what order to reveal labels from the full set of labels, essentially “rerun-

ning” the crowdsourcing after the fact. Due to generally small number of responses for each

task in these datasets, to simulate a response from a worker to a task we sample from a Ber-

noulli distribution with a probability ŷ that is estimated from the responses for that task given

in the original data.

Below we describe each dataset and how to use these data with crowd-generated microtask

crowdsourcing, where the set of tasks changes throughout the crowdsourcing.

RTE. Recognizing Textual Entailment [4]. Paired written statements from the PASCAL RTE-1

data challenge [22]. Workers were asked if one written statement entailed the other. These

data consist of N = 800 tasks and 8, 000 responses, with each task receiving 10 responses.

Data are available at https://sites.google.com/site/nlpannotations/.

Bluebirds. Identifying Bluebirds [23]. Each task is a photograph of either a Blue Grosbeak or

an Indigo Bunting, Workers were asked if the photograph contains an Indigo Bunting.

There are N = 108 tasks and 4, 212 responses, with 39 responses for each task. Data are

available at https://github.com/welinder/cubam.

Games. This dataset contains crowdsourcing tasks generated from an app based on a TV game

show, “Who Wants to Be a Millionaire” [24]. When a question is first revealed on the show,

the app sends a task containing the question and 4 possible answers to the users. Responses

from users and correct answers were collected. Data were preprocessed and responses

binarized following the procedure used by Li et al. [19]. The dataset contains N = 1, 682

tasks and 179, 162 responses. Data are available at https://github.com/bahadiri/Millionaire.

To study crowd-generated microtask crowdsourcing on these datasets, we first sample N0

tasks from the N tasks in the dataset to construct the initial seed tasks for the crowdsourcer to

use. To replicate requesting a new task, we simply draw from the set of tasks remaining in the

dataset that have not yet been requested. In other words, at the start of crowdsourcing there

are N0 tasks available to the crowdsourcer and N − N0 tasks which are in the data but not yet

requested. The growth rule in use determines when new tasks should be generated, simulating

the crowdsourcer’s decision process. Crowdsourcing continues until the budget B is exhausted

or all N tasks have been requested. Budget is used to request new tasks and to receive responses

to existing tasks.

4.2 Synthetic crowdsourcing

We supplement our results from real crowdsourcing data by performing controlled simula-

tions. We generate datasets following the model defined above by assuming each worker

response to task i follows a Bernoulli distribution with parameter θi. This controls for the cost

of the task and the amount of responses needed to accurately label ẑ i ¼ 0 or ẑ i ¼ 1. This

assumes workers are reliable; see the Discussion for incorporating worker reliability. Note also

that θi is used only to simulate worker responses—all subsequent calculations are performed

using the estimate ŷ i as θi itself is unknown to the crowdsourcer. When tasks are created, we

draw θi from a uniform prior distribution but we can also draw from other probability distri-

butions such as the Beta distribution. To begin each run of crowdsourcing, we generate a set of

N0 seed tasks. To simulate requesting a new task j from a worker at time t, we draw a new θj

from the underlying prior distribution, add j to the set of tasks, increment the number of tasks

N(t + 1) = N(t) + 1, and so forth. Unless otherwise noted, in simulations, we used N0 = 100 and

a total budget (Sec. 2.2) of B = 3000; we explore the effects of these and other parameters in our

PLOS ONE Efficient crowdsourcing of crowd-generated microtasks

PLOS ONE | https://doi.org/10.1371/journal.pone.0244245 December 17, 2020 8 / 18

https://sites.google.com/site/nlpannotations/
https://github.com/welinder/cubam
https://github.com/bahadiri/Millionaire
https://doi.org/10.1371/journal.pone.0244245


experiments below. Using this model, we can apply efficient budget allocation techniques such

as Opt-KG and implement the growth rules defined above.

Baseline control. To understand better the performance of cost forecasting, for each

Growth Rule, we compare to a non-growth baseline that controls for the number of tasks and

total budget spent on responses to those tasks. In this baseline, the number of tasks available at

the start matches the final number of tasks generated when using cost forecasting, no new

tasks are proposed by the crowd, and the budget available to the baseline is equal to the num-

ber of labeling responses received when using cost forecasting. Specifically, the budget for

responses Br available to the baseline is Br = B − (N − N0) where B is the total budget used by

cost forecasting and N is the final number of tasks generated by the crowdsourcing we are

comparing against. We perform one matching realization of the baseline for each realization

of cost forecasting, as randomness in worker responses leads to variability in the total number

of tasks proposed across different realizations of cost forecasting. Note that this baseline is

equivalent to a growth rule that performs all growth at the start of the crowdsourcing, then

receives all worker responses to those tasks until the budget is exhausted. This contrasts with

cost forecasting which dynamically alternates between growing tasks and responding to tasks

using a given Growth Rule.

5 Experiments

5.1 Real and synthetic data

We evaluate the performance of cost forecasting on simulated and real crowdsourcing data

(Fig 1). Solid lines correspond to cost forecasting while dashed lines correspond to the non-

growth baseline. For these results we used cost forecasting parameters (Sec. 3.2) δ = 0.9 for GR

I, δ = 0.5 for GR II (which exhibits faster growth than GR I), and nmax = 10 (Sec. 3.4) for both;

we further explore the dependence on δ and nmax below. (Bluebirds, a smaller, noisier dataset,

used δ = 0.5 (GR I), δ = 0.1 (GR II), N0 = 10, B = 600.) Cost forecasting leads to slower growth

at the beginning of crowdsourcing, visible in the long pause before the number of tasks begins

to grow (Fig 1). Our method does not begin to grow until the crowd has provided enough

responses about the seed tasks to achieve accurate labels. In contrast, the non-growth baseline

begins with all tasks initially available. Examining the accuracy, or proportion of correct tasks,

shows that cost forecasting achieves higher accuracy than the baseline for most data, especially

for earlier in the budget, with Bluebirds (a difficult task with a global accuracy of only�0.65)

being a possible exception. Note that by controlling for the overall growth rate and budget of

cost forecasting in the baseline (see above), the final accuracy (at high budgets) of both meth-

ods will on average always be the same, as both methods use the same Opt-KG allocation

method. Yet, cost forecasting can achieve higher accuracy at low budgets (often up to�5%)

by dynamically determining the growth rate based on the past and current state of the

crowdsourcing.

5.2 Dynamics of cost forecasting

Cost forecasting decides between requesting responses to existing tasks and requesting new

tasks. The dynamics of this decision process will vary as the responses are gathered for existing

tasks, leading to a dynamical pattern distinctly different from that exhibited by, e.g., constant

random growth (Fig 2, top).

A well-established way to study these dynamics is through the interevent times Δt, the num-

ber of non-growth requests that occur between growth requests. If a discrete-time process is

memoryless, where each request is equally likely to be a growth request, Δt will follow a geo-

metric distribution P(Δt = k) = p(1 − p)k where p is the probability for a growth event. This

PLOS ONE Efficient crowdsourcing of crowd-generated microtasks

PLOS ONE | https://doi.org/10.1371/journal.pone.0244245 December 17, 2020 9 / 18

https://doi.org/10.1371/journal.pone.0244245


converges to an exponential distribution for a continuous-time process, P(Δt) = λe−λΔt, with

rate parameter λ. In contrast, bursty processes exhibit heavy-tailed, often power-law distribu-

tions of Δt: P(Δt)/ (Δt)−α for power-law exponent α> 1 [25]. Power-law distributions show

higher probabilities relative to exponentials for both very short Δt and very long Δt, capturing

the long pauses of non-activity punctuated by sudden bursts of activity that are characteristic

of bursty processes.

Fig 2 shows the interevent distribution for both cost forecasting growth rules. At top, we

use a “spike train” to illustrate the growth events around one run of simulated crowdsourcing,

with another random growth spike train demonstrating a memoryless process where growth

events occur at the same rate as the cost forecasting growth rule. Below, we show power-law

and geometric distributions fitted to the Δt observed over 50 runs [26]. Indeed, we see that

Fig 1. Cost forecasting applied to synthetic and real world crowdsourcing data. Accuracy of inferred labels is

generally higher at given total budget for both growth rules (solid lines; blue: Growth Rule I, orange: Growth Rule II)

than if all tasks were available to start (control, dashed lines). Higher accuracy at tight budgets allows cost forecasting

to handle crowd-generated sets of tasks and to handle budget-uncertain scenarios (see Discussion), helping the

crowdsourcer to ensure the gathered data is high-quality even if the budget is suddenly cut.

https://doi.org/10.1371/journal.pone.0244245.g001

PLOS ONE Efficient crowdsourcing of crowd-generated microtasks

PLOS ONE | https://doi.org/10.1371/journal.pone.0244245 December 17, 2020 10 / 18

https://doi.org/10.1371/journal.pone.0244245.g001
https://doi.org/10.1371/journal.pone.0244245


cost forecasting is heavy-tailed and at least approximately well explained by a power-law distri-

bution, indicating it is a bursty process. Furthermore, likelihood-ratio tests [26] showed signif-

icant evidence (p < 10−14) for power-laws over exponentials (the continuous analog of the

geometric distribution) for both growth rules. The burstiness of cost forecasting shows that the

algorithm tends to alternate between suddenly requesting multiple new tasks (short interevent

times) and then focusing for some time on receiving responses to existing tasks (long intere-

vent times). In other words, it is reactive to the current state of the crowdsourcing, trading off

Fig 2. Cost forecasting leads to a bursty pattern of growth. (Top) Example “spike trains” highlighting when new

tasks are requested for one run of each growth rule. For context, we show for each an example of a spike train with the

same average growth rate where growth is equally likely to occur at any point. (Bottom) Cost forecasting leads to a

heavy-tailed, approximately power-law distribution of Δt, the waiting times or interevent times between growth

requests. This distribution is characteristic of a bursty process, unlike the geometric distribution of Δt displayed by a

memoryless random growth process.

https://doi.org/10.1371/journal.pone.0244245.g002

PLOS ONE Efficient crowdsourcing of crowd-generated microtasks

PLOS ONE | https://doi.org/10.1371/journal.pone.0244245 December 17, 2020 11 / 18

https://doi.org/10.1371/journal.pone.0244245.g002
https://doi.org/10.1371/journal.pone.0244245


expected costs given by responses to the current tasks with the potential cost a new, unseen

task will require to be completed.

5.3 Parameter dependence

The cost forecasting procedure introduced in Eqs (3)–(10) depends on parameters δ and nmax.

Here we explore some effects of these parameters. Further, we assume each crowd-generate

microtask crowdsourcing begins with an initial seed of N0 known tasks (and no responses), so

we also study how cost forecasting behaves for different size seeds.

Fig 3 uses simulated crowdsourcing to explore the dependence of the average growth rate

of tasks on δ and nmax. Examining Fig 3, nmax has little effect on GR I’s growth rate while

increasing δ provides the researcher with some ability to tune a given growth rule’s growth

rate. In particular, using GR I and varying δ from 1/2 to 1 increases the typical growth rate by

about 4% (Fig 3, bottom) essentially independently of nmax. GR II, in contrast, exhibits a higher

overall growth rate, a slightly greater dependence on nmax than GR I, and the growth rate

increases by�8% for δ = 1 compared with δ = 0.1 (Fig 3, bottom). These results show that the

choice of nmax does not have a large impact on growth rate for GR I, while GR II shows

increased growth rate for small values of nmax.

We next investigate how growth rate depends on the initial number of available tasks N0.

When many tasks are available to start, we anticipate that cost forecasting will spend more

Fig 3. How average growth rate depends on cost forecasting parameters δ and nmax (Sec. 3) for simulated crowdsourcing.

Generally, δ has a stronger effect than nmax on growth rate, especially GR I.

https://doi.org/10.1371/journal.pone.0244245.g003

PLOS ONE Efficient crowdsourcing of crowd-generated microtasks

PLOS ONE | https://doi.org/10.1371/journal.pone.0244245 December 17, 2020 12 / 18

https://doi.org/10.1371/journal.pone.0244245.g003
https://doi.org/10.1371/journal.pone.0244245


time exploring the available tasks before it begins to grow, which will lead to a lower overall

growth rate for a fixed budget. Indeed, Fig 4 (top) shows that larger N0 crowdsourcings have

lower growth rates than smaller N0 crowdsourcings for a given Growth Rule. For example,

when N0 = 200, the growth rate is approximately 5% lower (for GR I) or 3% lower (for GR II)

than when N0 = 50, indicating a small but potentially important affect on the overall

crowdsourcing.

Given that larger N0 gives lower growth rates, what effect does N0 have on accuracy? The

bottom panels of Fig 4 explore how accuracy improvement (accuracy of cost forecasting

minus accuracy of corresponding baseline) depends on different values of N0. Generally, accu-

racy is improved at tight budgets using cost forecasting, but this improvement is lessened to

some extent as N0 increases—this is plausible as very large values of N0 are effectively fixed-

size traditional microtask crowdsourcings, meaning large N0 are scenarios where there is less

advantage for a crowdsourcer to apply cost forecasting. Smaller N0, however, show the advan-

tages at tight budgets in terms of accuracy for cost forecasting. We also note that (as in Fig 1)

there is a consistent trend for GR II to briefly perform worse than the baseline at high values

Fig 4. Effect of initial number of tasks N0 on growth rate and improvement in accuracy for simulated

crowdsourcing. Generally, larger N0 leads to less growth and less improvement in accuracy, since very large N0

effectively acts like a fixed set of tasks.

https://doi.org/10.1371/journal.pone.0244245.g004

PLOS ONE Efficient crowdsourcing of crowd-generated microtasks

PLOS ONE | https://doi.org/10.1371/journal.pone.0244245 December 17, 2020 13 / 18

https://doi.org/10.1371/journal.pone.0244245.g004
https://doi.org/10.1371/journal.pone.0244245


of B (�2000) before higher values of B lead to comparable performance between the two

approaches.

5.4 Non-stationary crowdsourcing—Increasing completion costs

Our cost forecasting approach assumes the expected minimum cost to complete an unseen

task is constant over the course of the crowdsourcing. Yet, is this a realistic assumption? One

can imagine a scenario where the crowd initially proposes “easy” tasks (where consensus is

reached quickly and the label can be inferred with few responses) then the crowd runs out of

“low-hanging fruit” and later tasks will tend to be more expensive. An example scenario is a

question-answering site where all the easy-to-answer questions have already been proposed

and subsequently proposed questions tend to be polarizing for the community. If this occurs,

how will it affect the performance of crowdsourcing using cost forecasting?

To explore how cost forecasting behaves under an increasing-cost scenario, we augment

our crowdsourcing model by enabling the prior distribution for θi, the probability of a 1-label

for task i, to vary as more tasks are proposed by the crowd. When this distribution becomes

more sharply peaked at θ = 1/2, tasks will tend to be more costly to complete. Then, to capture

an increasing-cost scenario, we take a Beta distribution B(α, β) for the prior of θ and make the

parameters linearly increasing functions: α(Nt) = β(Nt) = 1 + s(Nt − N0), where Nt − N0 is the

number of tasks proposed so far, s parameterizes the rate at which tasks become more costly

(as increasing α = β leads to a prior more sharply peaked at θ = 1/2), and the intercept 1

ensures the initial prior is a uniform distribution.

We illustrate the changing prior of the increasing-cost model in the left panel of Fig 5. In

the inset of this panel we show how the Beta distribution parameters change as budget B
increases (and more new tasks are proposed), with the colored points in the inset

Fig 5. Increasing completion costs. (Left) The prior P(θ) for new tasks’ 1-label probability θ. The cost to complete tasks grows as

this distribution become more sharply peaked around θ = 1/2 where it requires the most responses to distinguish 1- and 0-labels.

(Inset) The change in prior distribution parameters as crowdsourcing occurs. The colored points correspond to the distributions

shown in the main plot. (Right) Accuracy for different rates of increasing cost s. Accuracy drops at high budgets for s > 0, as

expected, but both growth rules achieve similar accuracy for s = 0.2 as they do for the less costly s = 0.1.

https://doi.org/10.1371/journal.pone.0244245.g005

PLOS ONE Efficient crowdsourcing of crowd-generated microtasks

PLOS ONE | https://doi.org/10.1371/journal.pone.0244245 December 17, 2020 14 / 18

https://doi.org/10.1371/journal.pone.0244245.g005
https://doi.org/10.1371/journal.pone.0244245


corresponding to the distributions shown in the main plot. In the right of Fig 5 we illustrate

how the growth rules perform as tasks of increasing cost are proposed—note that the cost fore-

casting method used here is not made aware of these changing costs. Here we used δ = 0.5

(0.1) for GR I (GR II). As we also saw in Fig 1, GRII generally exhibits more growth and lower

accuracy than GRI, and we expect higher accuracy when there is lower growth as there will be

more responses for fewer tasks. This growth-accuracy tradeoff effect is exacerbated further

here, when later tasks are more difficult than earlier tasks, as less growth leads to more

responses to earlier, easier tasks. Indeed, accuracy drops at larger B for higher s, as tasks

become more difficult, but both growth rules handle the change in s rather well, showing simi-

lar drops in accuracy for both s = 0.1 and the more costly s = 0.2. Yet GR II shows a faster

growth rate for s = 0.1 than s = 0.2, demonstrating how, despite incorrectly assuming new

tasks are always equally costly to complete, cost forecasting can still react to some extent to

non-stationary task sets.

6 Discussion

In this work, we introduced cost forecasting as a means to crowdsource crowd-generated

microtasks where the crowd both completes tasks but also proposes new tasks to the crowd-

sourcer. Crowdsourcing of crowd-generated microtasks can be used for question-answering

sites, the design of new surveys, and in general can enable crowds to combine creative task

proposal with traditional microtask work. We demonstrated for binary labeling tasks on both

synthetic and real-world crowdsourcing data that cost forecasting can leverage the perfor-

mance of an efficient crowd allocation method and lead to improved accuracy.

Cost forecasting can also help budget-uncertain crowdsourcing. If a crowdsourcer does not

know how many responses they will be able to gather, they will want to achieve and maintain a

high accuracy as soon as possible, so that, whenever crowdsourcing terminates, the labels

received for tasks are of as high a quality as possible. One application of such budget-uncertain

crowdsourcing is large-scale, automated A/B/n testing, where stopping rules may be evaluated

online for many concurrent crowdsourcings.

There are many further directions to explore and extend this research. One direction is the

integration of cost forecasting with different crowd allocation methods. We focused our vali-

dation on applying cost forecasting to Opt-KG, a popular and effective crowd allocation

method for fixed sets of microtasks, free of parameters and focused on the overall accuracy of

the generated task labels. Likewise, the statistical decision process of cost forecasting brings to

mind Markov decision processes (MDP) and POMDP, and MDP and POMDP are common

approaches to algorithmic crowdsourcing [27]. Indeed, Opt-KG itself defines a policy using

MDP [18]; thus our results here demonstrate that cost forecasting can be fruitfully interfaced

with MDPs. More generally, as improved allocation methods are developed, it is important to

examine if and how they can benefit from cost forecasting or other methods geared towards

applying an allocation strategy to a set of crowd-generated microtasks. Developing methods

that can directly allocate workers without assuming a fixed and known number of tasks would

be an especially useful area of research.

Another direction for future research is to better understand how a crowdsourcer can inte-

grate information about a particular crowdsourcing problem of interest. For example, a

crowdsourcer may already have a good idea about the difficulties of new tasks, perhaps from

performing a pilot study. This information can be integrated into cost forecasting by choosing

a non-uniform prior distribution for θ. What about other cost forecasting parameters such as

δ, nmax or a different growth rule? A crowdsourcer will wish to balance their needs for accuracy

and budget constraints when choosing these parameters. Low-budget, pilot crowdsourcings

PLOS ONE Efficient crowdsourcing of crowd-generated microtasks

PLOS ONE | https://doi.org/10.1371/journal.pone.0244245 December 17, 2020 15 / 18

https://doi.org/10.1371/journal.pone.0244245


may again be fruitful to help select these parameters and it is worth studying procedures for

estimating their values.

Our formulation of cost forecasting is simple in several ways, but can be fruitfully

extended. We based our cost forecasting calculations on the Hoeffding bound for simplicity.

This leaves considerable room for improvement as the Hoeffding bound is not particularly

tight, and better results may be achieved using a tighter bound such as the empirical Bernstein
inequality [28, 29]. Further improvements include using a learning procedure where the esti-

mated unseen task completion cost is dynamically learned as crowdsourcing is performed,

although we found some support (Sec. 5.4) using an increasing-cost model that our basic cost

forecasting procedure can already handle some changing costliness of new tasks. We assume

reliable workers, but worker reliability can be readily incorporating by using the worker reli-

ability (or “one-coin”) variant of Opt-KG or by incorporating worker reliability into what-

ever allocation method the crowdsourcer wishes to use. We also assume the costs to request

new tasks or request responses to existing tasks are the same, but of course in practice these

may be different [20]. However, cost forecasting can automatically capture any task cost dif-

ferential by modifying E[n] to include a different proposal cost. Likewise, the completion

costs of unseen tasks are likely to vary over the course of a crowdsourcing, a phenomena we

investigated using an increasing-cost model. While such models are useful, it is also impor-

tant to understand how these costs may vary in practice (see [30]). Do workers really run out

of low-hanging fruit when performing crowd-generated microtask crowdsourcing? Experi-

ments are needed to understand better how the set of tasks changes over time as the crowd

proposes new tasks.

Finally, our cost forecasting Growth Rules focus on completion costs of tasks, as probabilis-

tic cost estimators can be applied. Yet it would be especially interesting to use other quantities

for growth rules. For example, if one can estimate the expected gain of novel information

when requesting a new task, then a crowdsourcer can design crowd-generated microtask

crowdsourcing to achieve goals such as crowdsourcing until a certain number of interesting or

novel tasks are generated.

Acknowledgments

We thank Paul Hines and Hamid Ossareh for helpful comments.

Author Contributions

Conceptualization: Abigail Hotaling, James P. Bagrow.

Data curation: Abigail Hotaling.

Formal analysis: James P. Bagrow.

Funding acquisition: James P. Bagrow.

Investigation: Abigail Hotaling, James P. Bagrow.

Methodology: Abigail Hotaling, James P. Bagrow.

Project administration: James P. Bagrow.

Resources: James P. Bagrow.

Software: Abigail Hotaling.

Supervision: James P. Bagrow.

Validation: Abigail Hotaling.

PLOS ONE Efficient crowdsourcing of crowd-generated microtasks

PLOS ONE | https://doi.org/10.1371/journal.pone.0244245 December 17, 2020 16 / 18

https://doi.org/10.1371/journal.pone.0244245


Visualization: Abigail Hotaling, James P. Bagrow.

Writing – original draft: Abigail Hotaling, James P. Bagrow.

Writing – review & editing: Abigail Hotaling, James P. Bagrow.

References
1. Brabham DC. Crowdsourcing as a model for problem solving: An introduction and cases. Convergence.

2008; 14(1):75–90. https://doi.org/10.1177/1354856507084420

2. Kittur A, Nickerson JV, Bernstein M, Gerber E, Shaw A, Zimmerman J, et al. The Future of Crowd Work.

In: Proceedings of the 2013 Conference on Computer Supported Cooperative Work. CSCW’13. New

York, NY, USA: ACM; 2013. p. 1301–1318. Available from: http://doi.acm.org/10.1145/2441776.

2441923.

3. Behrend TS, Sharek DJ, Meade AW, Wiebe EN. The viability of crowdsourcing for survey research.

Behavior research methods. 2011; 43(3):800. https://doi.org/10.3758/s13428-011-0081-0 PMID:

21437749

4. Snow R, O’Connor B, Jurafsky D, Ng A. Cheap and Fast—But is it Good? Evaluating Non-Expert Anno-

tations for Natural Language Tasks. In: Proceedings of the 2008 Conference on Empirical Methods in

Natural Language Processing. Honolulu, Hawaii: Association for Computational Linguistics; 2008.

p. 254–263. Available from: https://www.aclweb.org/anthology/D08-1027.

5. Wagy MD, Bongard JC, Bagrow JP, Hines PD. Crowdsourcing predictors of residential electric energy

usage. IEEE Systems Journal. 2018; 12(4):3151–3160. https://doi.org/10.1109/JSYST.2017.2778144

6. Kamar E, Hacker S, Horvitz E. Combining human and machine intelligence in large-scale crowdsourc-

ing. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Sys-

tems-Volume 1. International Foundation for Autonomous Agents and Multiagent Systems; 2012.

p. 467–474.

7. Franzoni C, Sauermann H. Crowd science: The organization of scientific research in open collaborative

projects. Research policy. 2014; 43(1):1–20. https://doi.org/10.1016/j.respol.2013.07.005

8. McAndrew TC, Guseva EA, Bagrow JP. Reply & Supply: Efficient crowdsourcing when workers do

more than answer questions. PloS one. 2017; 12(8):e0182662. https://doi.org/10.1371/journal.pone.

0182662 PMID: 28806413

9. Liu Y, Ho CJ. Incentivizing High Quality User Contributions: New Arm Generation in Bandit Learning. In:

Thirty-Second AAAI Conference on Artificial Intelligence; 2018.

10. Kittur A, Smus B, Khamkar S, Kraut RE. Crowdforge: Crowdsourcing complex work. In: Proceedings of

the 24th annual ACM symposium on User interface software and technology. ACM; 2011. p. 43–52.

11. Bongard JC, Hines PD, Conger D, Hurd P, Lu Z. Crowdsourcing predictors of behavioral outcomes.

IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2013; 43(1):176–185. https://doi.org/

10.1109/TSMCA.2012.2195168

12. Bernstein MS, Little G, Miller RC, Hartmann B, Ackerman MS, Karger DR, et al. Soylent: a word proces-

sor with a crowd inside. In: Proceedings of the 23nd annual ACM symposium on User interface software

and technology; 2010. p. 313–322.

13. Berenberg D, Bagrow JP. Efficient Crowd Exploration of Large Networks: The Case of Causal Attribu-

tion. Proc ACM Hum-Comput Interact. 2018; 2(CSCW):24:1–24:25. https://doi.org/10.1145/3274293

14. Salganik MJ, Levy KE. Wiki Surveys: Open and quantifiable social data collection. PloS one. 2015;

10(5):e0123483. https://doi.org/10.1371/journal.pone.0123483 PMID: 25992565

15. Zhang J, Ackerman MS, Adamic L. Expertise Networks in Online Communities: Structure and Algo-

rithms. In: Proceedings of the 16th International Conference on World Wide Web. WWW’07. New York,

NY, USA: ACM; 2007. p. 221–230. Available from: http://doi.acm.org/10.1145/1242572.1242603.

16. Bian J, Liu Y, Agichtein E, Zha H. Finding the Right Facts in the Crowd: Factoid Question Answering

over Social Media. In: Proceedings of the 17th International Conference on World Wide Web.

WWW’08. New York, NY, USA: ACM; 2008. p. 467–476. Available from: http://doi.acm.org/10.1145/

1367497.1367561.

17. Dawid AP, Skene AM. Maximum likelihood estimation of observer error-rates using the EM algorithm.

Applied statistics. 1979; p. 20–28. https://doi.org/10.2307/2346806

18. Chen X, Lin Q, Zhou D. Optimistic Knowledge Gradient Policy for Optimal Budget Allocation in Crowd-

sourcing. In: Dasgupta S, McAllester D, editors. Proceedings of the 30th International Conference on

Machine Learning. vol. 28 of Proceedings of Machine Learning Research. Atlanta, Georgia, USA:

PMLR; 2013. p. 64–72. Available from: http://proceedings.mlr.press/v28/chen13f.html.

PLOS ONE Efficient crowdsourcing of crowd-generated microtasks

PLOS ONE | https://doi.org/10.1371/journal.pone.0244245 December 17, 2020 17 / 18

https://doi.org/10.1177/1354856507084420
http://doi.acm.org/10.1145/2441776.2441923
http://doi.acm.org/10.1145/2441776.2441923
https://doi.org/10.3758/s13428-011-0081-0
http://www.ncbi.nlm.nih.gov/pubmed/21437749
https://www.aclweb.org/anthology/D08-1027
https://doi.org/10.1109/JSYST.2017.2778144
https://doi.org/10.1016/j.respol.2013.07.005
https://doi.org/10.1371/journal.pone.0182662
https://doi.org/10.1371/journal.pone.0182662
http://www.ncbi.nlm.nih.gov/pubmed/28806413
https://doi.org/10.1109/TSMCA.2012.2195168
https://doi.org/10.1109/TSMCA.2012.2195168
https://doi.org/10.1145/3274293
https://doi.org/10.1371/journal.pone.0123483
http://www.ncbi.nlm.nih.gov/pubmed/25992565
http://doi.acm.org/10.1145/1242572.1242603
http://doi.acm.org/10.1145/1367497.1367561
http://doi.acm.org/10.1145/1367497.1367561
https://doi.org/10.2307/2346806
http://proceedings.mlr.press/v28/chen13f.html
https://doi.org/10.1371/journal.pone.0244245


19. Li Q, Ma F, Gao J, Su L, Quinn CJ. Crowdsourcing High Quality Labels with a Tight Budget. In: Proceed-

ings of the Ninth ACM International Conference on Web Search and Data Mining. WSDM’16. New

York, NY, USA: ACM; 2016. p. 237–246. Available from: http://doi.acm.org/10.1145/2835776.2835797.

20. Sheng VS, Provost F, Ipeirotis PG. Get Another Label? Improving Data Quality and Data Mining Using

Multiple, Noisy Labelers. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining. KDD’08. New York, NY, USA: ACM; 2008. p. 614–622. Available

from: http://doi.acm.org/10.1145/1401890.1401965.

21. Karger DR, Oh S, Shah D. Budget-Optimal Task Allocation for Reliable Crowdsourcing Systems. Oper

Res. 2014; 62(1):1–24. https://doi.org/10.1287/opre.2013.1235

22. Dagan I, Glickman O, Magnini B. The PASCAL recognising textual entailment challenge. In: Machine

learning challenges. evaluating predictive uncertainty, visual object classification, and recognising tec-

tual entailment. Springer; 2006. p. 177–190.

23. Welinder P, Branson S, Perona P, Belongie SJ. The Multidimensional Wisdom of Crowds. In: Lafferty

JD, Williams CKI, Shawe-Taylor J, Zemel RS, Culotta A, editors. Advances in Neural Information Pro-

cessing Systems 23. Curran Associates, Inc.; 2010. p. 2424–2432. Available from: http://papers.nips.

cc/paper/4074-the-multidimensional-wisdom-of-crowds.pdf.

24. Aydin BI, Yilmaz YS, Demirbas M. A crowdsourced “Who wants to be a millionaire?” player. Concur-

rency and Computation: Practice and Experience. 2017; p. e4168. https://doi.org/10.1002/cpe.4168

25. Goh KI, Barabási AL. Burstiness and memory in complex systems. EPL (Europhysics Letters). 2008;

81(4):48002. https://doi.org/10.1209/0295-5075/81/48002

26. Alstott J, Bullmore E, Plenz D. powerlaw: a Python package for analysis of heavy-tailed distributions.

PloS one. 2014; 9(1):e85777. https://doi.org/10.1371/journal.pone.0085777 PMID: 24489671

27. Dai P, Lin CH, Mausam, Weld DS. POMDP-based control of workflows for crowdsourcing. Artificial

Intelligence. 2013; 202:52—85. https://doi.org/10.1016/j.artint.2013.06.002

28. Audibert JY, Munos R, Szepesvári C. Exploration–exploitation tradeoff using variance estimates in

multi-armed bandits. Theoretical Computer Science. 2009; 410(19):1876–1902. https://doi.org/10.

1016/j.tcs.2009.01.016

29. Maurer A, Pontil M. Empirical Bernstein bounds and sample variance penalization. In: Proceedings of

22nd Annual Conference on Learning Theory (COLT); 2009.

30. Shtok A, Dror G, Maarek Y, Szpektor I. Learning from the Past: Answering New Questions with Past

Answers. In: Proceedings of the 21st International Conference on World Wide Web. WWW’12. New

York, NY, USA: ACM; 2012. p. 759–768.

PLOS ONE Efficient crowdsourcing of crowd-generated microtasks

PLOS ONE | https://doi.org/10.1371/journal.pone.0244245 December 17, 2020 18 / 18

http://doi.acm.org/10.1145/2835776.2835797
http://doi.acm.org/10.1145/1401890.1401965
https://doi.org/10.1287/opre.2013.1235
http://papers.nips.cc/paper/4074-the-multidimensional-wisdom-of-crowds.pdf
http://papers.nips.cc/paper/4074-the-multidimensional-wisdom-of-crowds.pdf
https://doi.org/10.1002/cpe.4168
https://doi.org/10.1209/0295-5075/81/48002
https://doi.org/10.1371/journal.pone.0085777
http://www.ncbi.nlm.nih.gov/pubmed/24489671
https://doi.org/10.1016/j.artint.2013.06.002
https://doi.org/10.1016/j.tcs.2009.01.016
https://doi.org/10.1016/j.tcs.2009.01.016
https://doi.org/10.1371/journal.pone.0244245

