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Abstract
GitHub has become the central online platform for much of open source, hosting
most open source code repositories. With this popularity, the public digital traces of
GitHub are now a valuable means to study teamwork and collaboration. In many
ways, however, GitHub is a convenience sample, and may not be representative of
open source development off the platform. Here we develop a novel, extensive
sample of public open source project repositories outside of centralized platforms.
We characterized these projects along a number of dimensions, and compare to a
time-matched sample of corresponding GitHub projects. Our sample projects tend to
have more collaborators, are maintained for longer periods, and tend to be more
focused on academic and scientific problems.
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1 Introduction
The GitHub hosting platform has long been recognized as a promising window into the
complex world of online collaborations [10], open science [36], education [44], public sec-
tor work [31], and software development [21]. From 10 million repositories in 2014 [22],
GitHub reported over 60 million new repositories in 2020 [14]. However, despite its size,
there remain significant risks associated with GitHub as a data platform [23]. Without a
baseline study examining open source development off of GitHub, it is unclear whether
public GitHub data is a representative sample of software development practices or col-
laborative behavior. For studies of collaborations, it is particularly worrisome that most
GitHub repositories are private and that most public ones are small and inactive [22].
These data biases have only grown in recent years as the platform stopped limiting the
number of private repositories with fewer than four collaborators in 2019 [13].

Despite the fact that GitHub is not a transparent or unbiased window into collabora-
tions, the popularity of the platform alone has proved very attractive for researchers. Early
research focused on the value of transparency and working in public, analyzing how in-
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dividuals select projects and collaborations [10], and conversely how collaborations grow
and thrive [24, 32]. While fine-grained information about git commits within code repos-
itories is readily available, higher-level findings about team collaboration and social soft-
ware development practices are scarcer. Klug and Bagrow [24] introduce a metric of “ef-
fective team size,” measuring each contributor’s contributions against the distribution of
GitHub events for the repository, distinguishing peripheral and “drive-by” contributors
from more active team members. Choudhary et al. [6] focus on identifying “periods of
activity” within a repository, beginning with a simple measurement of time dispersion be-
tween GitHub events, then identifying the participants and files edited in each burst of
activity to determine productivity and partitioning of work according to apparent team
dynamics.

Beyond looking at patterns of collaborations within projects, it is also useful to study
GitHub as a social network, where collaborations are social ties mediated by repository
[4, 28, 41]. These studies tend to offer results showing analogies between GitHub collab-
orations and more classic online social networks, such as modular structure [45] and het-
erogeneous distributions of collaborators per individual driven by rich-get-richer effects
[4, 28]. More interestingly, studies also found that GitHub tends to show extremely low
levels of reciprocity in actual social connections [28] and high levels of hierarchical, often
star-like groups [45]. There are unfortunately few studies providing context for GitHub-
specific findings, and no clear baseline to which they should be compared. Is GitHub more
or less collaborative than other platforms of open source development? How much are col-
laborations shaped by the open source nature of the work, by the underlying technology,
and by the platform itself? Altogether, it remains an open problem to quantify just how
collaborative and social GitHub is.

GitHub is far from the only platform to host open source projects that use the Git ver-
sion control system, but it is the most popular. What remains unclear is how much of
the open source ecosystem now exists in GitHub’s shadow, and how different these open
source projects are when compared to their counterpart on the most popular public plat-
forms. To this end, here we aim to study what we call the Penumbra of open source: Public
repositories on public hosts other than the large centralized platforms (e.g. GitHub, Git-
Lab, Sourceforge and other forges). Specifically, we want to compare the size, the nature
and the temporal patterns of collaborations that occur in the Penumbra with that of a
comparable random subset of GitHub.

Open source has long been linked to academic institutions [25], including libraries
[5, 34], research centers [33, 35], and the classroom [43]. Version control systems such
as git have been interesting tools to assist in classroom learning [7, 18], including com-
puter science [11, 26] and statistics [2] courses. GitHub has played a role in the classroom
and for hosting scientific research [12, 44], yet we expect many institutions to be either
unwilling or unable to utilize GitHub or other commercial tools [8, 27, 43]. We therefore
wish in this work to distinguish between academic and non-academic Penumbra hosts, in
order to measure the extent with which academic institutions appear within the Penumbra
ecosystem.

The rest of this paper is organized as follows. In Sect. 2 we describe our materials and
methods, how we identify and collect Penumbra projects, how we gather a time-matched
sample of GitHub projects, and we describe the subsequent analyses we perform on col-
lected projects and the statistical models we employ. We report our results in Sect. 3 in-
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cluding our analysis of our Penumbra sample and our comparison to our GitHub sample.
Section 4 concludes with a discussion of our results, limitations of our study, and avenues
for future work.

2 Materials and methods
2.1 Data collection
We began by identifying various open source software packages that can serve as self-
hosted alternatives to GitHub. These included GitLab Community Edition (CE), Gitea,
Gogs, cgit, RhodeCode, and SourceHut. We limited ourselves to platforms with a web-
git interface similar to mainstream centralized platforms like GitHub and GitLab, and
so chose to exclude command-line only source code management like GitoLite, as well
as more general project management software like Jitsi and Phabricator. For each soft-
ware package, we identified a snippet of HTML from each package’s web interface that
uniquely identifies that software. Often this was a version string or header, such as <meta
content="GitLab" property="og:site_name">.

We then turned to Shodan [30] to find hosts running instances of each software package.
Shodan maintains a verbose port scan of the entire IPv4 and some of the IPv6 Internet,
including response information from each port, such as the HTML returned by each web
server. This port scan is searchable, allowing us to list all web servers open to the public
Internet that responded with our unique identifier HTML snippets. Notably, Shodan scans
only include the default web page from each host, so if a web server hosts multiple websites
and returns different content depending on the host in the HTTP request, then we will
miss all but the front page of the default website. Therefore, Shodan results should be
considered a strict under-count of public instances of these software packages. However,
we have no reason to believe that it is a biased sample, as there are trade-offs to dedicated
and shared web hosting for organizations of many sizes and purposes.

We narrowed our study to the three software packages with the largest number of pub-
lic instances: GitLab CE, Gogs, and Gitea. Searching Shodan, we found 59,596 unique
hosts. We wrote a web crawler for each software package, which would attempt to list ev-
ery repository on each host, and would report when instances were unreachable (11,677),
had no public repositories (44,863), or required login information to view repositories
(2101). We then attempted to clone all public repositories, again logging when a reposi-
tory failed to clone, sent us a redirect when we tried to clone, or required login information
to clone. For each successfully cloned repository, we checked the first commit hash against
the GitHub API, and set aside repositories that matched GitHub content (see Sect. 2.4).
We discarded all empty (zero-commit) repositories. This left us with 45,349 repositories
from 1558 distinct hosts.

Next, we wanted to collect a sample of GitHub repositories to compare development
practices. We wanted a sample of a similar number of repositories from a similar date
range, to account for trends in software development and other variation over time. We
chose not to control for other repository attributes, like predominant programming lan-
guage, size of codebase or contributorship, or repository purpose. We believe these at-
tributes may be considered factors when developers choose where to host their code, so
controlling for them would inappropriately constrain our analysis. To gather this compar-
ison sample, we drew from GitHub Archive [17] via their BigQuery interface to find an
equal number of “repository creation” events from each month a Penumbra repository
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was created in. We attempted to clone each repository, but found that some repositories
had since been deleted, renamed, or made private. To compensate, we oversampled from
GitHub Archive for each month by a factor of 1.5. After data collection and filtering we
were left with a time-matched sample of 57,914 GitHub repositories.

Lastly, to help identify academic hosts, we used a publicly available list of university
domains.1 This is a community-curated list, and so may contain geographic bias, but was
the most complete set of university domains we located.

2.2 Host analysis
We used geoip lookups2 to estimate the geographic distribution of hosts found in our
Penumbra scan. We also created a simple labelling process to ascertain how many hosts
were universities or research labs: Extract all unique emails from commits in each reposi-
tory, and label each email as academic if the hostname in the email appears in our univer-
sity domain list. If over 50% of unique email addresses on a host are academic, then the
host is labeled as academic. This cutoff was established experimentally after viewing the
distribution of academic email percentages per host, shown in the inset of Fig. 1(c). Under
this cutoff, 15% of Penumbra hosts (130) were tagged as academic.

2.3 Repository analysis
We are interested in diverging software development practices between GitHub and the
Penumbra, and so we measured a variety of attributes for each repository. To analyze the
large number of commits in our dataset, we modified git2net [15] and PyDriller [38] to ex-
tract only commit metadata, ignoring the contents of binary “diff” blobs for performance.
We measured the number of git branches per repository (later, in Fig. 2, we count only
remote branches, and ignore origin/HEAD, which is an alias to the default branch),
but otherwise concerned ourselves only with content in the main branch, so as to disam-
biguate measurements like “number of commits.”

From the full commit history of the main branch we gather the total number of commits,
the hash and time of each commit, the length in characters of each commit message, and
the number of repository contributors denoted by unique author email addresses. (Email
addresses are not an ideal proxy for contributors; a single contributor may use multiple
email addresses, for example if they have two computers that are configured differently.
Unfortunately, git commit data does not disambiguate usernames. Past work [16, 42] has
attempted to disambiguate authors based on a combination of their commit names and
commit email addresses, but we considered this out of scope for our work. By not ap-
plying identity disambiguation to either the Penumbra or GitHub repositories, the use of
emails-as-proxy is consistent across both samples. If identity disambiguation would add
bias, for example if disambiguation is more successful on formulaic university email ad-
dresses found on academic Penumbra hosts than it is on GitHub data, then using emails
as identifiers will provide a more consistent view.) From the current state (head commit
of the main branch) of the repository we measure the number of files per repository. This
avoids ambiguity where files may have been renamed, split, or deleted in the commit his-

1https://github.com/hipo/university-domains-list
2https://dev.maxmind.com/geoip/geolite2-free-geolocation-data/

https://github.com/hipo/university-domains-list
https://dev.maxmind.com/geoip/geolite2-free-geolocation-data/
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tory. We apply cloc,3 the “Count Lines of Code” utility, to identify the top programming
language per repository by file counts and by lines of code.

We also calculate several derived statistics. The average interevent time, the average
number of seconds between commits per repository, serves as a crude indicator of how
regularly contributions are made. We refine this metric as burstiness, a measure of the
index of dispersion (or Fano Factor) of commit times in a repository [6]. The index of
dispersion is defined as σ 2

w/μw, or the variance over the mean of events over some time
window w. Previous work defines “events” broadly to encompass all GitHub activity, such
as commits, issues, and pull requests. To consistently compare between platforms, we de-
fine “events” more narrowly as “commits per day”. Note that while interevent time is only
defined for repositories with at least two commits, burstiness is defined as 0 for single-
commit repositories.

We infer the age of each repository as the amount of time between the first and most
recent commit. One could compare the start or end dates of repositories using the first and
last commit as well, but because we sampled GitHub by finding repositories with the same
starting months as our Penumbra repositories, these measurements are less meaningful
within the context of our study.

Following Klug and Bagrow [24], we compute three measures for how work is distributed
across members of a team. The first, lead workload, is the fraction of commits performed
by the “lead” or heaviest contributor to the repository. Next, a repository is dominated if
the lead makes more commits than all other contributors combined (over 50% of com-
mits). Note that all single-contributor repositories are implicitly dominated by that single
user, and all two-contributor repositories are dominated unless both contributors have an
exactly equal number of commits, so dominance is most meaningful with three or more
contributors. Lastly, we calculate an effective team size, estimating what the effective num-
ber of team members would be if all members contributed equally. Effective team size m
for a repository with M contributors is defined as m = 2h, where h = –

∑M
i=1 fi log2 fi, and

fi = wi/W is the fraction of work conducted by contributors i. For example, a team with
M = 2 members who contribute equally (f1 = f2) would also have an effective team size of
m = 2, whereas a duo where one team member contributes 10 times more than the other
would have an “effective” team size of m = 1.356. Effective team size is functionally equiv-
alent to the Shannon entropy h, a popular index of diversity, but is exponentiated so values
are reported in numbers of team members as opposed to the units of h, which are typically
bits or nats. Since we only consider commits as work (lacking access to more holistic data
on bug tracking, project management, and other non-code contributions [3]), fi is equal to
the fraction of commits in a repository made by a particular contributor. Interpreting the
contents of commits to determine the magnitude of each contribution (as in expertise-
detection studies like [9]) would add nuance, but would require building parsers for each
programming language in our dataset, and requires assigning a subjective value for dif-
ferent kinds of contributions, and so is out of scope for our study. Therefore, the effective
team size metric improves on a naive count of contributors, which would consider each
contributor as equal even when their numbers of contributions differ greatly.

3https://github.com/AlDanial/cloc

https://github.com/AlDanial/cloc
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2.4 Duplication and divergence of repositories
It is possible for a repository to be an exact copy or “mirror” of another repository and
this mirroring may happen across datasets: a Penumbra repository could be mirrored on
GitHub, for example. Quantifying the extent of mirroring is important for determining
whether the Penumbra is a novel collection of open source code or if it mostly already
captured within, for instance, GitHub. Likewise, a repository may have been a mirror at
one point in the past but subsequent edits have caused one mirror to diverge from the
other.

Searching for git commit hashes provides a reliable way to detect duplicate repositories,
as hashes are derived from the cumulative repository contents4 and, barring intentional
attack [39] on older versions, hash collisions are rare. To determine the novelty of Penum-
bra repositories, we searched for their commit hashes on GitHub, on Software Heritage
(SH), a large-scale archive of open source code [1] and within the Penumbra sample it-
self to determine the extent of mirroring within the Penumbra. Search APIs were used
for GitHub and SH, while the Penumbra sample was searched locally. For each Penumbra
repository, we searched for the first hash and, if the repository had more than one commit,
the latest hash. If both hashes are found at least once on GitHub or SH, then we have a
complete copy (at the time of data collection). If the first hash is found but not the second,
then we know a mirror exists but has since diverged. If nothing is found, it is reasonable
to conclude the Penumbra project is novel (i.e., independent of GitHub and SH).

To ensure a clean margin when comparing the Penumbra and GitHub samples, we ex-
cluded from our analysis (Sect. 2.3) any Penumbra repositories that were duplicated on
GitHub, even if those duplicates diverged.

2.5 Statistical models
To understand better what features most delineate Penumbra and GitHub projects, we
employ two statistical models: logistic regression and a random forest ensemble classifier.
While both can in principle be used to predict whether a project belongs to the Penumbra
or not, our goal here is inference: we wish to understand what features are most distinct
between the two groups.

For logistic regression, we fitted two models. Exogenous variables were numbers of files,
contributors, commits, and branches; average commit message length; average editors per
file; average interevent time, in hours; lead workload, the proportion of commits made
by the heaviest contributor; effective team size; burstiness, as measured by the index of
dispersion; and, for model 1 only, the top programming language as a categorical variable.
Given differences in programming language choice in academic and industry [37], we wish
to investigate any differences when comparing Penumbra and GitHub projects (see also
Sects. 2.1 and 3.3). There is a long tail of uncommon languages that prevents convergence
when fitting model 1, so we processed the categorical variable by combining Bourne and
Bourne Again languages and grouping languages that appeared in fewer than 1000 unique
repositories into an “other” category before dummy coding. JavaScript, the most common
language, was chosen as the baseline category. Missing values were present, due primarily
to a missing top language categorization and/or an undefined average interevent time.

4Commit hashes include the files changed by the commit, and the hash of the parent commit, referencing a list of changes
all the way to the start of the repository.



Trujillo et al. EPJ Data Science           (2022) 11:31 Page 7 of 19

Empty or mostly empty repositories, as well as repositories with a single commit, will cause
these issues, so we performed listwise deletion on the original data, removing repositories
from our analysis when any fields were missing. After processing, we were left with 67,893
repositories (47.26% Penumbra). Logistic models were fitted using Newton-Raphson and
odds eβ and 95% CI on odds were reported.

For the random forest model, feature importances were used to infer which features
were most used by the model to distinguish between the two groups. We used the same
data as logistic regression model 2, randomly divided into 90% training, 10% validation
subsets. We fit an ensemble of 1000 trees to the training data using default hyperparame-
ters; random forests were fit using scikit-learn v0.24.2. Model performance was assessed
using an ROC curve on the validation set. Feature importances were measured with per-
mutation importance, a computationally-expensive measure of importance but one that is
not biased in favor of features with many unique values [40]. Permutation importance was
computed by measuring the fitted model’s accuracy on the validation set; then, the values
of a given feature were permuted uniformly at random between validation observations
and validation accuracy was recomputed. The more accuracy drops, the more important
that feature was. Permutations were repeated 100 times per feature and the average drop in
accuracy was reported. Note that permutation importance may be negative for marginally
important features and that importance is only useful as a relative quantity for ranking fea-
tures within a single trained (ensemble) model.

3 Results
We sampled the Penumbra of the open-source ecosystem: Public repositories on pub-
lic hosts independent from large centralized platforms. Our objective is to compare the
Penumbra to GitHub, the largest centralized platform, to better understand the represen-
tativeness of GitHub as a sample of the open-source ecosystem and how the choice of
platforms might influence online collaborations. In Sect. 3.1 we begin with an overview of
the Penumbra’s geographic distribution and the scale of hosts. In Sect. 3.2 we analyze the
collaboration patterns and temporal features of Penumbra and GitHub repositories. Sec-
tion 3.3 examines the programming language domains of Penumbra and GitHub projects
while Sect. 3.4 further investigates differences between academic and non-academic
Penumbra repositories. Statistical models in Sect. 3.5 summarize the combined similari-
ties and differences between Penumbra and GitHub repositories. Finally, in Sect. 3.6 we
investigate the novelty of our Penumbra sample, how many Penumbra repositories are du-
plicates and whether Penumbra repositories also exist on GitHub and within the Software
Heritage [1] archive.

3.1 An overview of the Penumbra sample
Our Penumbra sample consists of 1558 distinct hosts from all six inhabited continents
and 45,349 non-empty repositories with no matching commits on GitHub (Sect. 2.4; we
explore overlap with GitHub in Sect. 3.6). This geographic distribution, illustrated in Fig. 1
and described numerically in Table 1, shows that the Penumbra is predominantly active
in Europe, North America, and Asia by raw number of hosts and repositories. However,
Oceania has the second most repositories per capita, and the highest percentage of aca-
demic emails in commits from repositories cloned from those hosts (Table 1). Overall,
the geographic spread of the Penumbra is similar to GitHub’s self-reported distribution
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Figure 1 The penumbra of open source. (a) Geographic distribution of hosts and unique email addresses (in
parentheses) in our Penumbra sample. (b) Distributions of emails per host and repositories per host.
(c) Distribution of unique emails per repositories. (d) Correlation between repositories and emails per host. We
see that the number of repositories and email addresses generally correlate, with some outlying hosts with
many more repositories than emails. Academic hosts follow the same general trend, except that they tend to
be larger than many non-academic hosts. (inset) Hosts are classified as “academic” if over 50 percent of their
email addresses end in .edu or come from a manually identified academic domain

Table 1 Geographic split of our Penumbra (PN) and GitHub (GH) [14] samples

Region % Hosts % PN users % GH users [14] PN repositories (per capita) % Unique emails from
academic domains

EU 39.35 73.47 26.8 83,612 (1.52× 10–4) 39.20
NA 26.37 15.81 34 51,245 (2.97× 10–4) 41.22
AS 30.95 7.38 30.7 21,765 (1.55× 10–5) 1.21
SA 1.46 1.36 4.9 2776 (1.64× 10–5) 12.41
OC 1.60 1.93 1.7 3347 (2.58× 10–4) 65.24
AF 0.28 0.04 2 215 (9.44× 10–7) 0.00

of users [14], but with a stronger European emphasis and even less Southern Hemisphere
representation.

We find a strong academic presence in the Penumbra: on 15% of hosts, more than half
of email addresses found in commits come from academic domains (see also Sect. 3.4).
These academic hosts make up many of the larger hosts, but represent a minority of all
Penumbra repositories (37% of non-GitHub-mirrors). We plotted the “size” of each host
in terms of unique emails and repositories, as well as its academic status, in Fig. 1(c). We
find that while academic hosts tend not to be “small”, they do not dominate the Penumbra
in terms of user or repository count, refuting the hypothesis that most Penumbra activity
is academic.
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We are also interested in how distinct hosts are: How many repositories do users work
on, and are those repositories all on a single host, or do users contribute to code on mul-
tiple hosts? To investigate, we first plot the number of unique email addresses per host in
Fig. 1(b), then count the number of email addresses that appear on multiple hosts. Criti-
cally, users may set a different email address on different hosts (or even unique emails per-
repository, or per-commit, although this would be tedious and unlikely), so using email
addresses as a proxy for “shared users” offers only a lower-bound on collaboration. We find
that 91.7% of email addresses in our dataset occur on only one host, leaving 3435 email
addresses present on 2-4 hosts. Fifteen addresses appear on 5-74 hosts, but all appear
to be illegitimate, such as “you@example.com”, emails without domain suffixes like “ad-
min” or “root@localhost”, and a few automated systems like “anonymous@overleaf.com”.
We find 61 email addresses on hosts in two or more countries (after removing fake email
addresses by the aforementioned criteria), and 33 on multiple continents (after the same
filtering).

We did not repeat this analysis on our GitHub sample, because the dataset is too dif-
ferent for such a comparison to be meaningful. All GitHub repositories are on a single
“host”, so there is no analogue to “multi-host email addresses”. We considered comparing
distributions of “repositories committed to by each email”, but ruled this out because of
our data collection methodology. For each Penumbra host, we have data on every com-
mit in every public repository, giving us a complete view of each user’s contributions. For
GitHub however, we have a small sample of repositories from the entire platform, so we
are likely to miss repositories that each GitHub user contributed to.

3.2 Collaboration patterns and temporal features
We compare software development and collaboration patterns between our Penumbra
sample and a GitHub sample of equivalent size and time period (Fig. 2 and Table 2). We
examine commits per repository, unique emails per repository (as a proxy for unique con-
tributors), files per repository, average editors per file, branches per repository, and com-
mit message length. While mean behavior was similar in both repository samples, diverg-
ing tail distributions show that Penumbra repositories usually have more commits, more
files, fewer emails, and more editors per file.

One might hypothesize that with more files and fewer editors the Penumbra would have
stronger “partitioning”, with each editor working on a different subset of files. However,
our last three metrics suggest that the Penumbra has more collaborative tendencies: while
Penumbra repositories are larger (in terms of files), with smaller teams (in terms of edi-
tors), there are on average more contributors working on the same files or parts of a project.
To deepen our understanding of this collaborative behavior, we also estimated the “effec-
tive team size” for each repository by the fraction of commits made by each editor. This
distinguishes consistent contributors from editors with only a handful of commits, such as
“drive-by committers” that make one pull request, improving upon a naive count of unique
emails. These estimates show that while there are more GitHub repositories with one ac-
tive contributor, and more enormous projects with over 50 team members, the Penumbra
has more repositories with between 2 and 50 team members. However, for all team sizes
between 2 and 10, we find that more penumbra repositories are “dominated” by a single
contributor, see Fig. 3(f ), meaning that their top contributor has made over 50% of all
commits.
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Figure 2 Editing and collaborating in the Penumbra and GitHub. Comparison of GitHub and Penumbra
samples on a variety of metrics. Unique users for all plots are determined by unique email addresses in
commit data. File counts are taken at the HEAD commit of the main branch. Editor overlap is defined as
average number of unique contributors that have edited each file. Panel (e) excludes two GitHub repositories
with 500 and 1300 branches, to make trend comparison easier

We also compare temporal aspects of Penumbra and GitHub repositories (Fig. 3).
Penumbra repositories are shown to be generally older in terms of “time between the first
and most recent commit” in Fig. 3(a), have more commits in Fig. 3(b), but are also shown
to have a longer time between commits measured both as interevent time in Fig. 3(c), and
as burstiness in Fig. 3(d). This means that while Penumbra repositories are maintained
for longer (or conversely, there are many short-lived repositories on GitHub that receive
no updates), they are maintained inconsistently or in a bursty pattern, receiving updates
after long periods of absence. And while both GitHub and Penumbra repositories tend to
be bursty, a larger portion of Penumbra repositories exhibit burstiness as indicated by an
index of dispersion above 1.
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Table 2 Comparison of Penumbra and GitHub datasets

Statistic Fig. Penumbra GitHub KS 2-Sample

Mean Median CI Mean Median CI KS S KS P

Files 2(c) 244.47 12 [1, 859] 156.07 9 [1, 264] 0.07 <0.001
Committers 2(b) 2.39 1 [1, 6] 2.08 1 [1, 3] 0.17 <0.001
Message Lengths 2(f ) 29.24 20.80 [7.00, 67.33] 24.23 17.60 [7.42, 56.00] 0.13 <0.001
Editor Density 2(d) 1.12 1.00 [1.00, 1.60] 1.05 1.00 [1.00, 1.30] 0.20 <0.001
Burstiness 3(d) 4.86 2.88 [0.50, 14.51] 3.68 2.15 [0.17, 11.24] 0.13 <0.001
Commits 2(a) 67.12 8 [1, 194] 25.27 4 [1, 57] 0.20 <0.001
Branches 2(e) 1.74 1 [1, 4] 1.67 1 [1, 5] 0.03 <0.001
Age (hours) 3(a) 5528 883 [0.1, 25556] 2669 73 [0.03, 16194] 0.26 <0.001
Age / Commits 3(b) 283 39 [0.02, 1261] 193 9 [0.01, 944] 0.19 <0.001
Avg. Interevent 3(c) 375 43 [0.05, 1547] 257 11 [0.02, 1130] 0.19 <0.001
Team Size 3(e) 1.71 1.00 [1.00, 3.92] 1.42 1.00 [1.00, 2.67] 0.17 <0.001

Mean, median, and 5th and 95th percentile values from the Penumbra and GitHub samples for each statistic. KS S and KS P
represent the Kolmogorov-Smirnov two-sample statistic, and its corresponding p-value.

3.3 Language domains
Most of our analysis has focused on repository metadata (commits and files), rather than
the content of the repositories. This is because more in-depth content comparison, such
as the dependencies used, or functions written within a repository’s code, would vary
widely between languages and require complex per-language parsing. However, we have
classified language prevalence across the Penumbra and GitHub by lines of code and file
count per repository in Fig. 4(left column). We find that the Penumbra emphasizes aca-
demic languages (TeX) and older languages (C, C++, PHP, Python), while GitHub repre-
sents more web development (JavaScript, TypeScript, Ruby), and mobile app development
(Swift, Kotlin, Java). We additionally compare repositories within the Penumbra that come
from academic hosts (> 50% emails come from academic domains; see Methods) and non-
academic hosts, using the same lines of code and file count metrics in Fig. 4(right column).
Academic hosts unsurprisingly contain more languages used in research (Python, MAT-
LAB, and Jupyter notebooks), and languages used in teaching (Haskell, assembly, C). De-
spite Java’s prevalence in enterprise and mobile app development, and JavaScript’s use in
web development, academic hosts also represent more Java and Typescript development.
By contrast, non-academic hosts contain more desktop or mobile app development (Ob-
jective C, C#, QT), web development (JavaScript, PHP), shell scripts and docker files, and,
surprisingly, Pascal.

3.4 Academic and non-academic hosts
Academic hosts account for over 15% of hosts and 37% of repositories in the Penumbra,
so one might hypothesize that academic software development has a striking effect on
the differences between GitHub and the Penumbra. To investigate this, Fig. 5 redraws
Figs. 2(d) and 3(a) with academic and non-academic Penumbra repositories distinguished.
We find that the academic repositories are maintained for about the same length of time as
their non-academic counterparts, and that academic repositories have fewer editors per
file than non-academic development. In fact, academic repositories more closely match
GitHub repositories in terms of editors per file. Therefore, we find that academic soft-
ware development does not drive the majority of the differences between GitHub and the
Penumbra.
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Figure 3 Temporal characteristics of collaboration in the Penumbra and GitHub. Comparison of GitHub and
Penumbra samples on a variety of temporal metrics. The age of repository is given by the time between the
first and latest commit. Panels (b-d) look at the heterogeneity of time between events. We first compare the
distribution of mean interevent time to the distribution of ratios of age to number of commits, then show the
distribution of index of dispersion per repository. Panels (e-f) compare how collaborative repositories actually
are, or whether they are dominated by a single committer

3.5 Statistical models
To understand holistically how these different features delineate the two data sources, we
perform combined statistical modeling. First, we performed logistic regression (Table 3)
on the outcome variable of GitHub vs. Penumbra, see Sect. 2.5 for details. We fit two
models, one containing the primary programming language as a feature and the other
not. Examining the odds eβ for each variable, we can determine which variables, with
other variables held constant, most clearly distinguish GitHub and Penumbra repositories.



Trujillo et al. EPJ Data Science           (2022) 11:31 Page 13 of 19

Figure 4 Dominant language domains in the Penumbra and GitHub. Comparison of language popularity,
measured by lines of code (LOC) in panels (a-b) and by file count in panels (c-d). We count the top languages
of each repository by the specified metric, normalize the results to a percentage of independent or GitHub
repositories, then subtract the percentages. Therefore a language with a value of –0.05, for example, is the top
language on 5% more GitHub repositories than Penumbra repositories, while a positive value indicates 5%
more Penumbra repositories than GitHub repositories

The strongest non-language separators are average editors per file, lead workload, and the
number of contributors. The strongest language separators are TeX, C/C++ Headers, and
C++. The odds on these variables underscore our existing results: Penumbra projects have
more editors per file and less workload placed upon the lead contributor. Likewise, the
odds on TeX and C/C++ code make it more likely for Penumbra projects to be focused on
academic and scientific problems.

Supplementing our logistic models we also used nonlinear random forest regressions
trained to predict whether a project was in GitHub or the Penumbra. While trained mod-
els can be used as predictive classifiers, our goal is to interpret which model features are
used to make those predictions, so we report in Fig. 6 the top-ten feature importances
(Sect. 2.5) in our model. Here we find some differences and similarities with the (linear)
logistic regression results. Both average editors per file and number of contributors were
important, but the random forest found that lead workload was not particularly impor-
tant. However, the most important features for the random forests were average interevent
time, burstiness, and number of commits. (All three were also significant in the logistic
regression models.) The overall predictive performance of the random forest is reason-
able (Fig. 6 inset). Taken together, the random forest is especially able to separate the two
classes of projects based on time dynamics.
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Figure 5 Comparing academic and non-academic Penumbra repositories to GitHub. Fifteen percent of
Penumbra hosts are “academic” under our definition, representing 37% of all Penumbra repositories. We find
that academic repositories are maintained for about as long as non-academic Penumbra repositories, so
academic development practices do not drive the divergence from GitHub development patterns that we
observe. Academic repositories have fewer editors per file than non-academic Penumbra repositories,
however, more closely matching development practices seen on GitHub. This refutes the hypothesis that the
Penumbra differs widely from GitHub primarily due to academic influence

Table 3 Logistic regression models for GitHub vs. Penumbra outcome

Model 1 Model 2

eβ p CI eβ p CI

Constant 0.188 <0.001 [0.156, 0.225] 0.435 <0.001 [0.364, 0.520]

Language (vs. JavaScript)
Bourne (Again) Shell 3.478 <0.001 [3.162, 3.826]
C 4.065 <0.001 [3.671, 4.502]
C# 1.589 <0.001 [1.444, 1.750]
C++ 5.636 <0.001 [5.184, 6.127]
C/C++ Header 5.829 <0.001 [5.103, 6.657]
Java 2.192 <0.001 [2.070, 2.321]
Jupyter Notebook 2.722 <0.001 [2.459, 3.012]
OTHER 2.124 <0.001 [2.023, 2.230]
PHP 2.524 <0.001 [2.323, 2.743]
Python 2.804 <0.001 [2.651, 2.965]
TeX 30.641 <0.001 [25.348, 37.040]
TypeScript 1.078 0.187 [0.964, 1.205]
Vuejs Component 4.940 <0.001 [4.331, 5.635]

Files 1.000 <0.001 [1.000, 1.000] 1.000 <0.001 [1.000, 1.000]
Commits 1.001 <0.001 [1.001, 1.001] 1.001 <0.001 [1.001, 1.001]
Average editors per file 3.337 <0.001 [3.002, 3.709] 3.328 <0.001 [3.002, 3.689]
Average message length 1.002 <0.001 [1.001, 1.002] 1.002 <0.001 [1.001, 1.003]
Burstiness 1.059 <0.001 [1.055, 1.063] 1.058 <0.001 [1.053, 1.062]
Average interevent time [h] 1.000 <0.001 [1.000, 1.000] 1.000 <0.001 [1.000, 1.000]
Branches 0.971 <0.001 [0.965, 0.976] 0.961 <0.001 [0.955, 0.966]
Lead workload 0.461 <0.001 [0.407, 0.522] 0.433 <0.001 [0.384, 0.489]
Committers 0.945 <0.001 [0.936, 0.955] 0.940 <0.001 [0.931, 0.950]
Effective team size 1.010 0.516 [0.980, 1.040] 1.016 0.315 [0.985, 1.047]
-2LL 84,478.844 89,788.631
Pseudo-R2 0.100 0.044
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Figure 6 Random forest model to delineate Penumbra and GitHub samples. Feature permutation
importance (Sect. 2.5) once nonlinear random forest regressions were trained to predict whether a project
was on GitHub or in the Penumbra. The predictive performance is shown in the inset using an ROC curve of
true positive rate (TPR) and false positive rate (FPR)

3.6 Novelty of the Penumbra sample
How novel are the repositories we have discovered in the Penumbra? It may be that many
Penumbra repositories are “mirrored” on GitHub, in which case the collected Penum-
bra sample would not constitute especially novel data. In contrast, if few repositories ap-
pear on GitHub, then we can safely conclude that the Penumbra is a novel collection of
open source code. To test the extent that the Penumbra is independent of GitHub, we
checked the first commit hash of each Penumbra repository against the GitHub Search
API (Sect. 2.4). We found 9994 such repositories (Fig. 7) and conclude that the majority
of Penumbra repositories are novel. We excluded these overlapping repositories from our
comparisons between the Penumbra and GitHub. However, such repositories may not rep-
resent true duplicates, but instead “forks”, where developers clone software from GitHub
to the Penumbra and then make local changes, or vice-versa, leading to diverging code.
To disambiguate, we checked the last commit hash from each of the 9994 overlapping
repositories against the GitHub API, and found 3056 diverging commits, as illustrated in
Fig. 7. In other words, 30% of Penumbra repositories with a first commit on GitHub also
contain code not found on GitHub. While we still excluded these repositories to ensure
a wide margin between the samples, in fact, the differences in these repositories further
underscore the novelty of the Penumbra data.

We also compared our repositories against Software Heritage [1], an archive of open
source software development. While Software Heritage is not a hosting platform like
GitHub, it represents a potentially similar dataset to our own. Applying the same method-
ology as for GitHub mirror detection, we found that 4053 repositories (9% of our non-
empty Penumbra sample) had a matching first commit hash archived on Software Her-
itage, and that of these, 564 repositories (14% of overlapping first commits) contained
code not archived by Software Heritage. Since Software Heritage is an archive, rather than
a software development platform, we did not filter out the 4053 overlapping repositories
from our comparisons between the Penumbra and GitHub. We again conclude that our
Penumbra sample is primarily not captured by Software Heritage; see also Discussion.
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Figure 7 The Penumbra’s intersection with other datasets. Of the 55,343 discovered, non-empty repositories,
18% have a first commit hash that can also be found on GitHub (GitHub Duplicate), but 30% of those
repositories diverge and contain code not found on GitHub (GitHub Diverged). Likewise, 7% of Penumbra
repositories have a first commit archived by Software Heritage [1], and 14% of those contain code not
archived by Software Heritage. Finally, 21% of Penumbra repositories share a commit with one or more other
Penumbra repositories, and of these, 58% have unique final commits

We additionally looked for mirrors and forks within the Penumbra, shown in Fig. 7. As
when comparing to external datasets, we found repositories that shared a first commit
hash, then checked whether the last commit hash diverged. We find 11,717 Penumbra
repositories share a first commit with at least one other, which constitutes 25.88% of non-
empty Penumbra repositories. These mirrors come from a total of 3348 initial commits.
Of these repositories, 6806 share a last commit with one or more repositories, suggesting
that they have not diverged since creation. Notably, 1287 of the forks and mirrors contain
only a single commit. Over a third of the forks and mirrors are on academic hosts (39.46%,
4623 repositories), which is especially notable because academic hosts constitute only 15%
of our dataset. As a ratio, we find 35.56 mirrors per academic host, 9.98 per non-academic
host. This would fit an educational use-case, such as a class assignment where each student
clones an initial repository and then works independently.

4 Discussion
In this paper, we collected independent git hosts to sample what we call the Penumbra of
the open source ecosystems: public hosts outside of the large, popular, centralized plat-
forms like GitHub. Our objective was to compare a sample of the Penumbra to GitHub
to evaluate the representativeness of GitHub as a data source and identify the potential
impact of a platform on the work it hosts. In doing so, we found that projects outside
of centralized platforms were more academic, longer maintained, and more collaborative
than those on GitHub. These conclusions were obtained by looking at domains of email
addresses of user accounts in the repositories, as well as measuring temporal and struc-
tural patterns of collaborations therein.

Importantly, projects in the Penumbra also appear to be more heterogeneous in impor-
tant ways. Namely, we find more skewed distributions of files per repository and average
number of editors per file, as well as more bursty patterns of editing. These bursty pat-
terns are characterized by a skewed distribution of interevent time; meaning, projects in
the Penumbra are more likely to feature long periods without edits before periods of rapid
editing. Altogether, our results could suggest that the popularity and very public nature of
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GitHub might contribute to a large amount of low-involvement contributors (or so-called
“drive-by” contributions).

Our current sample of the Penumbra is extensive, but our methodology for identifying
hosts presents shortcomings. Most notably, of the approximately 60,000 GitLab CE, Gitea,
and Gogs instances identified by Shodan, only 13.4% provided public access to one or more
repositories. We can say little about the hosts that provide no public access, and therefore
constitute the dark shadow of software development. Further, Shodan may not capture all
activity on a given server: it identifies hosts by their responses to a request for the front
page, and is not a complete web crawler (Sect. 2.1). While this was sufficient in identifying
60,000 hosts, it is an under-estimate of the true number of Penumbra hosts, meaning that
our dataset remains a sample of the full Penumbra and there exists room for improvement.

We determined from commit hashes that our sample of the Penumbra is mostly dis-
joint from GitHub and from the Software Heritage archive. This shows that our strategy
of seeking public hosts using Shodan is a viable way to uncover novel sources of code.
Archival efforts such as Software Heritage and World of Code [29] can benefit from this
work as they can easily integrate our sampling method into their archiving process. Doing
so can help them further achieve their goals of capturing as much open source software
as possible.

There remain several open questions about our sample of the Penumbra worth fur-
ther pursuit. For instance, the observed shift in languages used on Penumbra reposito-
ries implies that they tend to have more focus on academic and/or scientific projects than
GitHub. However, programming language alone is a coarse signal of the intent and con-
text of a given project. Future work should attempt a natural language analysis of repos-
itory contents to better identify the type of problems tackled in different regions of the
open-source ecosystem. Furthermore, this would allow researchers to match Penumbra
and GitHub repositories by the problem-spaces they address, indicating whether devel-
opers off of GitHub solve similar problems in different ways.

There are also several important demographic questions regarding, among others, the
age, gender, and nationality of users in the Penumbra. GitHub is overwhelmingly popular
in North America [14] and therefore does not provide uniform data on members of the
open-source community. Critical new efforts could attempt to assess the WEIRDness —
i.e., the focus on Western, educated, industrialized, rich and democratic populations [19,
20] — of GitHub as a convenience sample.

Digging further into the code or user demographics of the Penumbra would allow us
to answer new questions about the interplay of code development with the platform that
supports it. How does the distribution of developer experience levels affect projects, teams
and communities? What are the key differences in intent, practices and products based
on how open and public the platform is? Who contributes to the work and does it differ
depending on the platform [3]?

We are only beginning to explore the space of open source beyond GitHub and other
major central platforms. The Penumbra hosts explored here are fundamentally harder to
sample and analyze. The hosts themselves have to be found and not all hosts provide public
access. Unlike GitHub, we do not have a convenient API for sampling the digital traces
of collaborations, so the underlying git repositories must be analyzed directly. There is
therefore much of the open source ecosystem left to explore. Yet only by exploring new
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regions, as we did here, can we fully understand how online collaborative work is affected
by the platforms and technologies that support it.
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